Inverse Map of a Bijective Homomorphism is a Group Homomorphism

Group Theory Problems and Solutions in Mathematics

Problem 445

Let $G$ and $H$ be groups and let $\phi: G \to H$ be a group homomorphism.
Suppose that $f:G\to H$ is bijective.
Then there exists a map $\psi:H\to G$ such that
\[\psi \circ \phi=\id_G \text{ and } \phi \circ \psi=\id_H.\] Then prove that $\psi:H \to G$ is also a group homomorphism.

 
LoadingAdd to solve later
Sponsored Links
 

Proof.

Let $a, b$ be arbitrary elements of the group $H$.
To prove $\psi: H \to G$ is a group homomorphism, we need
\[\psi(ab)=\psi(a)\psi(b).\]

We compute
\begin{align*}
&\phi\left(\, \psi(a)\psi(b) \,\right)\\
&=\phi\left(\, \psi(a) \,\right) \phi\left(\, \psi(b) \,\right) && \text{since $\phi$ is a group homomorphism}\\
&=ab && \text{since $\phi\circ \psi=\id_H$}\\
&=\phi \left(\, \psi (ab) \,\right) && \text{since $\phi\circ \psi=\id_H$}.\\
\end{align*}

Since $\phi$ is injective, it yields that
\[\psi(ab)=\psi(a)\psi(b),\] and thus $\psi:H\to G$ is a group homomorphism.

What’s an Isomorphism?

A bijective group homomorphism $\phi:G \to H$ is called isomorphism.

The above problem guarantees that the inverse map of an isomorphism is again a homomorphism, and hence isomorphism.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Isomorphism Criterion of Semidirect Product of GroupsIsomorphism Criterion of Semidirect Product of Groups Let $A$, $B$ be groups. Let $\phi:B \to \Aut(A)$ be a group homomorphism. The semidirect product $A \rtimes_{\phi} B$ with respect to $\phi$ is a group whose underlying set is $A \times B$ with group operation \[(a_1, b_1)\cdot (a_2, b_2)=(a_1\phi(b_1)(a_2), b_1b_2),\] where $a_i […]
  • Injective Group Homomorphism that does not have Inverse HomomorphismInjective Group Homomorphism that does not have Inverse Homomorphism Let $A=B=\Z$ be the additive group of integers. Define a map $\phi: A\to B$ by sending $n$ to $2n$ for any integer $n\in A$. (a) Prove that $\phi$ is a group homomorphism. (b) Prove that $\phi$ is injective. (c) Prove that there does not exist a group homomorphism $\psi:B […]
  • The Center of the Heisenberg Group Over a Field $F$ is Isomorphic to the Additive Group $F$The Center of the Heisenberg Group Over a Field $F$ is Isomorphic to the Additive Group $F$ Let $F$ be a field and let \[H(F)=\left\{\, \begin{bmatrix} 1 & a & b \\ 0 &1 &c \\ 0 & 0 & 1 \end{bmatrix} \quad \middle| \quad \text{ for any} a,b,c\in F\, \right\}\] be the Heisenberg group over $F$. (The group operation of the Heisenberg group is matrix […]
  • Normal Subgroups, Isomorphic Quotients, But Not IsomorphicNormal Subgroups, Isomorphic Quotients, But Not Isomorphic Let $G$ be a group. Suppose that $H_1, H_2, N_1, N_2$ are all normal subgroup of $G$, $H_1 \lhd N_2$, and $H_2 \lhd N_2$. Suppose also that $N_1/H_1$ is isomorphic to $N_2/H_2$. Then prove or disprove that $N_1$ is isomorphic to $N_2$.   Proof. We give a […]
  • Multiplicative Groups of Real Numbers and Complex Numbers are not IsomorphicMultiplicative Groups of Real Numbers and Complex Numbers are not Isomorphic Let $\R^{\times}=\R\setminus \{0\}$ be the multiplicative group of real numbers. Let $\C^{\times}=\C\setminus \{0\}$ be the multiplicative group of complex numbers. Then show that $\R^{\times}$ and $\C^{\times}$ are not isomorphic as groups.   Recall. Let $G$ and $K$ […]
  • Group Homomorphism Sends the Inverse Element to the Inverse ElementGroup Homomorphism Sends the Inverse Element to the Inverse Element Let $G, G'$ be groups. Let $\phi:G\to G'$ be a group homomorphism. Then prove that for any element $g\in G$, we have \[\phi(g^{-1})=\phi(g)^{-1}.\]     Definition (Group homomorphism). A map $\phi:G\to G'$ is called a group homomorphism […]
  • A Group Homomorphism and an Abelian GroupA Group Homomorphism and an Abelian Group Let $G$ be a group. Define a map $f:G \to G$ by sending each element $g \in G$ to its inverse $g^{-1} \in G$. Show that $G$ is an abelian group if and only if the map $f: G\to G$ is a group homomorphism.   Proof. $(\implies)$ If $G$ is an abelian group, then $f$ […]
  • A Group Homomorphism is Injective if and only if the Kernel is TrivialA Group Homomorphism is Injective if and only if the Kernel is Trivial Let $G$ and $H$ be groups and let $f:G \to K$ be a group homomorphism. Prove that the homomorphism $f$ is injective if and only if the kernel is trivial, that is, $\ker(f)=\{e\}$, where $e$ is the identity element of $G$.     Definitions/Hint. We recall several […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Group Theory
Group Theory Problems and Solutions in Mathematics
Group Homomorphism Sends the Inverse Element to the Inverse Element

Let $G, G'$ be groups. Let $\phi:G\to G'$ be a group homomorphism. Then prove that for any element $g\in G$,...

Close