Tagged: basis for a vector space

Subspace Spanned by Trigonometric Functions $\sin^2(x)$ and $\cos^2(x)$

Problem 612

Let $C[-2\pi, 2\pi]$ be the vector space of all real-valued continuous functions defined on the interval $[-2\pi, 2\pi]$.
Consider the subspace $W=\Span\{\sin^2(x), \cos^2(x)\}$ spanned by functions $\sin^2(x)$ and $\cos^2(x)$.

(a) Prove that the set $B=\{\sin^2(x), \cos^2(x)\}$ is a basis for $W$.

(b) Prove that the set $\{\sin^2(x)-\cos^2(x), 1\}$ is a basis for $W$.

 
Read solution

LoadingAdd to solve later

Determine the Dimension of a Mysterious Vector Space From Coordinate Vectors

Problem 606

Let $V$ be a vector space and $B$ be a basis for $V$.
Let $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4, \mathbf{w}_5$ be vectors in $V$.
Suppose that $A$ is the matrix whose columns are the coordinate vectors of $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4, \mathbf{w}_5$ with respect to the basis $B$.

After applying the elementary row operations to $A$, we obtain the following matrix in reduced row echelon form
\[\begin{bmatrix}
1 & 0 & 2 & 1 & 0 \\
0 & 1 & 3 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}.\]

(a) What is the dimension of $V$?

(b) What is the dimension of $\Span\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4, \mathbf{w}_5\}$?

(The Ohio State University, Linear Algebra Midterm)
 
Read solution

LoadingAdd to solve later

Vector Space of 2 by 2 Traceless Matrices

Problem 601

Let $V$ be the vector space of all $2\times 2$ matrices whose entries are real numbers.
Let
\[W=\left\{\, A\in V \quad \middle | \quad A=\begin{bmatrix}
a & b\\
c& -a
\end{bmatrix} \text{ for any } a, b, c\in \R \,\right\}.\]

(a) Show that $W$ is a subspace of $V$.

(b) Find a basis of $W$.

(c) Find the dimension of $W$.

(The Ohio State University, Linear Algebra Midterm)
 
Read solution

LoadingAdd to solve later

Exponential Functions Form a Basis of a Vector Space

Problem 590

Let $C[-1, 1]$ be the vector space over $\R$ of all continuous functions defined on the interval $[-1, 1]$. Let
\[V:=\{f(x)\in C[-1,1] \mid f(x)=a e^x+b e^{2x}+c e^{3x}, a, b, c\in \R\}\] be a subset in $C[-1, 1]$.

(a) Prove that $V$ is a subspace of $C[-1, 1]$.

(b) Prove that the set $B=\{e^x, e^{2x}, e^{3x}\}$ is a basis of $V$.

(c) Prove that
\[B’=\{e^x-2e^{3x}, e^x+e^{2x}+2e^{3x}, 3e^{2x}+e^{3x}\}\] is a basis for $V$.

 
Read solution

LoadingAdd to solve later

Use Coordinate Vectors to Show a Set is a Basis for the Vector Space of Polynomials of Degree 2 or Less

Problem 588

Let $P_2$ be the vector space over $\R$ of all polynomials of degree $2$ or less.
Let $S=\{p_1(x), p_2(x), p_3(x)\}$, where
\[p_1(x)=x^2+1, \quad p_2(x)=6x^2+x+2, \quad p_3(x)=3x^2+x.\]

(a) Use the basis $B=\{x^2, x, 1\}$ of $P_2$ to prove that the set $S$ is a basis for $P_2$.

(b) Find the coordinate vector of $p(x)=x^2+2x+3\in P_2$ with respect to the basis $S$.

 
Read solution

LoadingAdd to solve later

Determine Whether Each Set is a Basis for $\R^3$

Problem 579

Determine whether each of the following sets is a basis for $\R^3$.

(a) $S=\left\{\, \begin{bmatrix}
1 \\
0 \\
-1
\end{bmatrix}, \begin{bmatrix}
2 \\
1 \\
-1
\end{bmatrix}, \begin{bmatrix}
-2 \\
1 \\
4
\end{bmatrix} \,\right\}$

(b) $S=\left\{\, \begin{bmatrix}
1 \\
4 \\
7
\end{bmatrix}, \begin{bmatrix}
2 \\
5 \\
8
\end{bmatrix}, \begin{bmatrix}
3 \\
6 \\
9
\end{bmatrix} \,\right\}$

(c) $S=\left\{\, \begin{bmatrix}
1 \\
1 \\
2
\end{bmatrix}, \begin{bmatrix}
0 \\
1 \\
7
\end{bmatrix} \,\right\}$

(d) $S=\left\{\, \begin{bmatrix}
1 \\
2 \\
5
\end{bmatrix}, \begin{bmatrix}
7 \\
4 \\
0
\end{bmatrix}, \begin{bmatrix}
3 \\
8 \\
6
\end{bmatrix}, \begin{bmatrix}
-1 \\
9 \\
10
\end{bmatrix} \,\right\}$

 
Read solution

LoadingAdd to solve later

Basis For Subspace Consisting of Matrices Commute With a Given Diagonal Matrix

Problem 287

Let $V$ be the vector space of all $3\times 3$ real matrices.
Let $A$ be the matrix given below and we define
\[W=\{M\in V \mid AM=MA\}.\] That is, $W$ consists of matrices that commute with $A$.
Then $W$ is a subspace of $V$.

Determine which matrices are in the subspace $W$ and find the dimension of $W$.

(a) \[A=\begin{bmatrix}
a & 0 & 0 \\
0 &b &0 \\
0 & 0 & c
\end{bmatrix},\] where $a, b, c$ are distinct real numbers.

(b) \[A=\begin{bmatrix}
a & 0 & 0 \\
0 &a &0 \\
0 & 0 & b
\end{bmatrix},\] where $a, b$ are distinct real numbers.

 
Read solution

LoadingAdd to solve later

Prove a Given Subset is a Subspace and Find a Basis and Dimension

Problem 270

Let
\[A=\begin{bmatrix}
4 & 1\\
3& 2
\end{bmatrix}\] and consider the following subset $V$ of the 2-dimensional vector space $\R^2$.
\[V=\{\mathbf{x}\in \R^2 \mid A\mathbf{x}=5\mathbf{x}\}.\]

(a) Prove that the subset $V$ is a subspace of $\R^2$.

(b) Find a basis for $V$ and determine the dimension of $V$.

 
Read solution

LoadingAdd to solve later

Basis and Dimension of the Subspace of All Polynomials of Degree 4 or Less Satisfying Some Conditions.

Problem 256

Let $P_4$ be the vector space consisting of all polynomials of degree $4$ or less with real number coefficients.
Let $W$ be the subspace of $P_2$ by
\[W=\{ p(x)\in P_4 \mid p(1)+p(-1)=0 \text{ and } p(2)+p(-2)=0 \}.\] Find a basis of the subspace $W$ and determine the dimension of $W$.

 
Read solution

LoadingAdd to solve later

Matrix Representation of a Linear Transformation of the Vector Space $R^2$ to $R^2$

Problem 255

Let $B=\{\mathbf{v}_1, \mathbf{v}_2 \}$ be a basis for the vector space $\R^2$, and let $T:\R^2 \to \R^2$ be a linear transformation such that
\[T(\mathbf{v}_1)=\begin{bmatrix}
1 \\
-2
\end{bmatrix} \text{ and } T(\mathbf{v}_2)=\begin{bmatrix}
3 \\
1
\end{bmatrix}.\]

If $\mathbf{e}_1=\mathbf{v}_1+2\mathbf{v}_2 \text{ and } \mathbf{e}_2=2\mathbf{v}_1-\mathbf{u}_2$, where $\mathbf{e}_1, \mathbf{e}_2$ are the standard unit vectors in $\R^2$, then find the matrix of $T$ with respect to the basis $\{\mathbf{e}_1, \mathbf{e}_2\}$.
 
Read solution

LoadingAdd to solve later

Determine Eigenvalues, Eigenvectors, Diagonalizable From a Partial Information of a Matrix

Problem 180

Suppose the following information is known about a $3\times 3$ matrix $A$.
\[A\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix}=6\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix},
\quad
A\begin{bmatrix}
1 \\
-1 \\
1
\end{bmatrix}=3\begin{bmatrix}
1 \\
-1 \\
1
\end{bmatrix}, \quad
A\begin{bmatrix}
2 \\
-1 \\
0
\end{bmatrix}=3\begin{bmatrix}
1 \\
-1 \\
1
\end{bmatrix}.\]

(a) Find the eigenvalues of $A$.

(b) Find the corresponding eigenspaces.

(c) In each of the following questions, you must give a correct reason (based on the theory of eigenvalues and eigenvectors) to get full credit.
Is $A$ a diagonalizable matrix?
Is $A$ an invertible matrix?
Is $A$ an idempotent matrix?

(Johns Hopkins University Linear Algebra Exam)
 
Read solution

LoadingAdd to solve later

A Matrix Representation of a Linear Transformation and Related Subspaces

Problem 164

Let $T:\R^4 \to \R^3$ be a linear transformation defined by
\[ T\left (\, \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} \,\right) = \begin{bmatrix}
x_1+2x_2+3x_3-x_4 \\
3x_1+5x_2+8x_3-2x_4 \\
x_1+x_2+2x_3
\end{bmatrix}.\]

(a) Find a matrix $A$ such that $T(\mathbf{x})=A\mathbf{x}$.

(b) Find a basis for the null space of $T$.

(c) Find the rank of the linear transformation $T$.

(The Ohio State University Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later

Give a Formula for a Linear Transformation if the Values on Basis Vectors are Known

Problem 159

Let $T: \R^2 \to \R^2$ be a linear transformation.
Let
\[
\mathbf{u}=\begin{bmatrix}
1 \\
2
\end{bmatrix}, \mathbf{v}=\begin{bmatrix}
3 \\
5
\end{bmatrix}\] be 2-dimensional vectors.
Suppose that
\begin{align*}
T(\mathbf{u})&=T\left( \begin{bmatrix}
1 \\
2
\end{bmatrix} \right)=\begin{bmatrix}
-3 \\
5
\end{bmatrix},\\
T(\mathbf{v})&=T\left(\begin{bmatrix}
3 \\
5
\end{bmatrix}\right)=\begin{bmatrix}
7 \\
1
\end{bmatrix}.
\end{align*}
Let $\mathbf{w}=\begin{bmatrix}
x \\
y
\end{bmatrix}\in \R^2$.
Find the formula for $T(\mathbf{w})$ in terms of $x$ and $y$.

 
Read solution

LoadingAdd to solve later

Vector Space of Polynomials and Coordinate Vectors

Problem 157

Let $P_2$ be the vector space of all polynomials of degree two or less.
Consider the subset in $P_2$
\[Q=\{ p_1(x), p_2(x), p_3(x), p_4(x)\},\] where
\begin{align*}
&p_1(x)=x^2+2x+1, &p_2(x)=2x^2+3x+1, \\
&p_3(x)=2x^2, &p_4(x)=2x^2+x+1.
\end{align*}

(a) Use the basis $B=\{1, x, x^2\}$ of $P_2$, give the coordinate vectors of the vectors in $Q$.

(b) Find a basis of the span $\Span(Q)$ consisting of vectors in $Q$.

(c) For each vector in $Q$ which is not a basis vector you obtained in (b), express the vector as a linear combination of basis vectors.

 
Read solution

LoadingAdd to solve later

Give the Formula for a Linear Transformation from $\R^3$ to $\R^2$

Problem 156

Let $T: \R^3 \to \R^2$ be a linear transformation such that
\[T(\mathbf{e}_1)=\begin{bmatrix}
1 \\
4
\end{bmatrix}, T(\mathbf{e}_2)=\begin{bmatrix}
2 \\
5
\end{bmatrix}, T(\mathbf{e}_3)=\begin{bmatrix}
3 \\
6
\end{bmatrix},\] where
\[\mathbf{e}_1=\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \mathbf{e}_2=\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}, \mathbf{e}_3=\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}\] are the standard unit basis vectors of $\R^3$.
For any vector $\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}\in \R^3$, find a formula for $T(\mathbf{x})$.

 
Read solution

LoadingAdd to solve later

Show the Subset of the Vector Space of Polynomials is a Subspace and Find its Basis

Problem 153

Let $P_3$ be the vector space over $\R$ of all degree three or less polynomial with real number coefficient.
Let $W$ be the following subset of $P_3$.
\[W=\{p(x) \in P_3 \mid p'(-1)=0 \text{ and } p^{\prime\prime}(1)=0\}.\] Here $p'(x)$ is the first derivative of $p(x)$ and $p^{\prime\prime}(x)$ is the second derivative of $p(x)$.

Show that $W$ is a subspace of $P_3$ and find a basis for $W$.

 
Read solution

LoadingAdd to solve later