# Category: Linear Algebra

## Problem 569

For an $m\times n$ matrix $A$, we denote by $\mathrm{rref}(A)$ the matrix in reduced row echelon form that is row equivalent to $A$.
For example, consider the matrix $A=\begin{bmatrix} 1 & 1 & 1 \\ 0 &2 &2 \end{bmatrix}$
Then we have
$A=\begin{bmatrix} 1 & 1 & 1 \\ 0 &2 &2 \end{bmatrix} \xrightarrow{\frac{1}{2}R_2} \begin{bmatrix} 1 & 1 & 1 \\ 0 &1 & 1 \end{bmatrix} \xrightarrow{R_1-R_2} \begin{bmatrix} 1 & 0 & 0 \\ 0 &1 &1 \end{bmatrix}$ and the last matrix is in reduced row echelon form.
Hence $\mathrm{rref}(A)=\begin{bmatrix} 1 & 0 & 0 \\ 0 &1 &1 \end{bmatrix}$.

Find an example of matrices $A$ and $B$ such that
$\mathrm{rref}(AB)\neq \mathrm{rref}(A) \mathrm{rref}(B).$

## Problem 567

Prove the following identity for any positive integer $n$.
$\begin{bmatrix} \cos \theta & -\sin \theta\\ \sin \theta& \cos \theta \end{bmatrix}^n=\begin{bmatrix} \cos n\theta & -\sin n\theta\\ \sin n\theta& \cos n\theta \end{bmatrix}.$

## Problem 565

Let $I$ be the $2\times 2$ identity matrix.
Then prove that $-I$ cannot be a commutator $[A, B]:=ABA^{-1}B^{-1}$ for any $2\times 2$ matrices $A$ and $B$ with determinant $1$.

## Problem 564

Let $A$ and $B$ be $n\times n$ skew-symmetric matrices. Namely $A^{\trans}=-A$ and $B^{\trans}=-B$.

(a) Prove that $A+B$ is skew-symmetric.

(b) Prove that $cA$ is skew-symmetric for any scalar $c$.

(c) Let $P$ be an $m\times n$ matrix. Prove that $P^{\trans}AP$ is skew-symmetric.

(d) Suppose that $A$ is real skew-symmetric. Prove that $iA$ is an Hermitian matrix.

(e) Prove that if $AB=-BA$, then $AB$ is a skew-symmetric matrix.

(f) Let $\mathbf{v}$ be an $n$-dimensional column vecotor. Prove that $\mathbf{v}^{\trans}A\mathbf{v}=0$.

(g) Suppose that $A$ is a real skew-symmetric matrix and $A^2\mathbf{v}=\mathbf{0}$ for some vector $\mathbf{v}\in \R^n$. Then prove that $A\mathbf{v}=\mathbf{0}$.

## Problem 563

Let
$\mathbf{v}_1=\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \mathbf{v}_2=\begin{bmatrix} 1 \\ a \\ 5 \end{bmatrix}, \mathbf{v}_3=\begin{bmatrix} 0 \\ 4 \\ b \end{bmatrix}$ be vectors in $\R^3$.

Determine a condition on the scalars $a, b$ so that the set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent.

## Problem 562

An $n\times n$ matrix $A$ is called nonsingular if the only vector $\mathbf{x}\in \R^n$ satisfying the equation $A\mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$.
Using the definition of a nonsingular matrix, prove the following statements.

(a) If $A$ and $B$ are $n\times n$ nonsingular matrix, then the product $AB$ is also nonsingular.

(b) Let $A$ and $B$ be $n\times n$ matrices and suppose that the product $AB$ is nonsingular. Then:

1. The matrix $B$ is nonsingular.
2. The matrix $A$ is nonsingular. (You may use the fact that a nonsingular matrix is invertible.)

## Problem 561

Let $A$ be a singular $n\times n$ matrix.
Let
$\mathbf{e}_1=\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \mathbf{e}_2=\begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, \mathbf{e}_n=\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$ be unit vectors in $\R^n$.

Prove that at least one of the following matrix equations
$A\mathbf{x}=\mathbf{e}_i$ for $i=1,2,\dots, n$, must have no solution $\mathbf{x}\in \R^n$.

## Problem 560

Let $A$ be an $n\times (n-1)$ matrix and let $\mathbf{b}$ be an $(n-1)$-dimensional vector.
Then the product $A\mathbf{b}$ is an $n$-dimensional vector.
Set the $n\times n$ matrix $B=[A_1, A_2, \dots, A_{n-1}, A\mathbf{b}]$, where $A_i$ is the $i$-th column vector of $A$.

Prove that $B$ is a singular matrix for any choice of $\mathbf{b}$.

## Problem 559

For each of the following matrix $A$, prove that $\mathbf{x}^{\trans}A\mathbf{x} \geq 0$ for all vectors $\mathbf{x}$ in $\R^2$. Also, determine those vectors $\mathbf{x}\in \R^2$ such that $\mathbf{x}^{\trans}A\mathbf{x}=0$.

(a) $A=\begin{bmatrix} 4 & 2\\ 2& 1 \end{bmatrix}$.

(b) $A=\begin{bmatrix} 2 & 1\\ 1& 3 \end{bmatrix}$.

## Problem 558

Let $A$ be an $n\times n$ nonsingular matrix.

Prove that the transpose matrix $A^{\trans}$ is also nonsingular.

## Problem 556

Let $\mathbf{v}$ be a nonzero vector in $\R^n$.
Then the dot product $\mathbf{v}\cdot \mathbf{v}=\mathbf{v}^{\trans}\mathbf{v}\neq 0$.
Set $a:=\frac{2}{\mathbf{v}^{\trans}\mathbf{v}}$ and define the $n\times n$ matrix $A$ by
$A=I-a\mathbf{v}\mathbf{v}^{\trans},$ where $I$ is the $n\times n$ identity matrix.

Prove that $A$ is a symmetric matrix and $AA=I$.
Conclude that the inverse matrix is $A^{-1}=A$.

## Problem 555

Let $U$ and $V$ be vector spaces over a scalar field $\F$.
Define the map $T:U\to V$ by $T(\mathbf{u})=\mathbf{0}_V$ for each vector $\mathbf{u}\in U$.

(a) Prove that $T:U\to V$ is a linear transformation.
(Hence, $T$ is called the zero transformation.)

(b) Determine the null space $\calN(T)$ and the range $\calR(T)$ of $T$.

## Problem 553

Let $T:\R^3 \to \R^3$ be the linear transformation defined by the formula
$T\left(\, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \,\right)=\begin{bmatrix} x_1+3x_2-2x_3 \\ 2x_1+3x_2 \\ x_2+x_3 \end{bmatrix}.$

Determine whether $T$ is an isomorphism and if so find the formula for the inverse linear transformation $T^{-1}$.

## Problem 552

For each of the following $3\times 3$ matrices $A$, determine whether $A$ is invertible and find the inverse $A^{-1}$ if exists by computing the augmented matrix $[A|I]$, where $I$ is the $3\times 3$ identity matrix.

(a) $A=\begin{bmatrix} 1 & 3 & -2 \\ 2 &3 &0 \\ 0 & 1 & 1 \end{bmatrix}$

(b) $A=\begin{bmatrix} 1 & 0 & 2 \\ -1 &-3 &2 \\ 3 & 6 & -2 \end{bmatrix}$.

## Problem 551

Let $\mathbf{v}$ be a vector in an inner product space $V$ over $\R$.
Suppose that $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is an orthonormal basis of $V$.
Let $\theta_i$ be the angle between $\mathbf{v}$ and $\mathbf{u}_i$ for $i=1,\dots, n$.

Prove that
$\cos ^2\theta_1+\cdots+\cos^2 \theta_n=1.$

## Problem 550

Consider the $2\times 2$ matrix
$A=\begin{bmatrix} \cos \theta & -\sin \theta\\ \sin \theta& \cos \theta \end{bmatrix},$ where $\theta$ is a real number $0\leq \theta < 2\pi$.

(a) Find the characteristic polynomial of the matrix $A$.

(b) Find the eigenvalues of the matrix $A$.

(c) Determine the eigenvectors corresponding to each of the eigenvalues of $A$.

## Problem 549

By calculating the Wronskian, determine whether the set of exponential functions
$\{e^x, e^{2x}, e^{3x}\}$ is linearly independent on the interval $[-1, 1]$.

## Problem 548

An $n\times n$ matrix $A$ is said to be invertible if there exists an $n\times n$ matrix $B$ such that

1. $AB=I$, and
2. $BA=I$,

where $I$ is the $n\times n$ identity matrix.

If such a matrix $B$ exists, then it is known to be unique and called the inverse matrix of $A$, denoted by $A^{-1}$.

In this problem, we prove that if $B$ satisfies the first condition, then it automatically satisfies the second condition.
So if we know $AB=I$, then we can conclude that $B=A^{-1}$.

Let $A$ and $B$ be $n\times n$ matrices.
Suppose that we have $AB=I$, where $I$ is the $n \times n$ identity matrix.

Prove that $BA=I$, and hence $A^{-1}=B$.

## Problem 547

Let $A$ be an $n\times n$ nonsingular matrix with integer entries.

Prove that the inverse matrix $A^{-1}$ contains only integer entries if and only if $\det(A)=\pm 1$.

## Problem 546

Let $A$ be an $n\times n$ matrix.

The $(i, j)$ cofactor $C_{ij}$ of $A$ is defined to be
$C_{ij}=(-1)^{ij}\det(M_{ij}),$ where $M_{ij}$ is the $(i,j)$ minor matrix obtained from $A$ removing the $i$-th row and $j$-th column.

Then consider the $n\times n$ matrix $C=(C_{ij})$, and define the $n\times n$ matrix $\Adj(A)=C^{\trans}$.
The matrix $\Adj(A)$ is called the adjoint matrix of $A$.

When $A$ is invertible, then its inverse can be obtained by the formula

$A^{-1}=\frac{1}{\det(A)}\Adj(A).$

For each of the following matrices, determine whether it is invertible, and if so, then find the invertible matrix using the above formula.

(a) $A=\begin{bmatrix} 1 & 5 & 2 \\ 0 &-1 &2 \\ 0 & 0 & 1 \end{bmatrix}$.

(b) $B=\begin{bmatrix} 1 & 0 & 2 \\ 0 &1 &4 \\ 3 & 0 & 1 \end{bmatrix}$.