Find a Condition that a Vector be a Linear Combination

Linear algebra problems and solutions

Problem 312

Let
\[\mathbf{v}=\begin{bmatrix}
a \\
b \\
c
\end{bmatrix}, \qquad \mathbf{v}_1=\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}, \qquad \mathbf{v}_2=\begin{bmatrix}
2 \\
-1 \\
2
\end{bmatrix}.\] Find the necessary and sufficient condition so that the vector $\mathbf{v}$ is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2$.

 
FavoriteLoadingAdd to solve later

Sponsored Links

We give two solutions.

Solution 1. (Use the range)

The question is equivalent to finding the condition so that the vector $\mathbf{v}$ is in the range of the matrix
\[A=[\mathbf{v}_1, \mathbf{v}_2]=\begin{bmatrix}
1 & 2 \\
2 & -1 \\
0 &2
\end{bmatrix}.\] The vector $\mathbf{v}$ is in the range $\calR(A)$ if and only if the system $A\mathbf{x}=\mathbf{v}$ is consistent.

We reduce the augmented matrix of the system by elementary row operations as follows.
\begin{align*}
[A\mid \mathbf{v}]=\left[\begin{array}{rr|r}
1 & 2 & a \\
2 &-1 &b \\
0 & 2 & c
\end{array}\right] \xrightarrow{R_2-2R_1}
\left[\begin{array}{rr|r}
1 & 2 & a \\
0 &-5 &b-2a \\
0 & 2 & c
\end{array}\right]\\[6pt] \xrightarrow{R_2+3R_3}
\left[\begin{array}{rr|r}
1 & 2 & a \\
0 &1 &b-2a+3c \\
0 & 2 & c
\end{array}\right]\\
\xrightarrow{R_3-2R_2}
\left[\begin{array}{rr|r}
1 & 2 & a \\
0 &1 &b-2a+3c \\
0 & 0 & 4a-2b-5c
\end{array}\right].
\end{align*}
The last matrix is in echelon form and the system is consistent if and only if $4a-2b-5c=0$.
Therefore, the condition that $\mathbf{v}$ be a linear combination of $\mathbf{v}_1, \mathbf{v}_2$ is $4a-2b-5c=0$.

Solution 2. (Use the cross product)

Note that the vectors $\mathbf{v}_1, \mathbf{v}_2$ spans a plane $P$ in $\R^3$.
Thus, the vector $\mathbf{v}$ is a linear combination of $\mathbf{v}_1, \mathbf{v}_2$ if and only if $\mathbf{v}$ lies on the plane $P$.

The cross product
\[\mathbf{v}_1\times \mathbf{v}_2=\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}\times \begin{bmatrix}
2 \\
-1 \\
2
\end{bmatrix}=
\begin{bmatrix}
\begin{vmatrix}
2 & -1\\
0& 2
\end{vmatrix} \\[10pt] – \begin{vmatrix}
1 & 2\\
0& 2
\end{vmatrix} \\[10pt] \begin{vmatrix}
1 & 2\\
2& -1
\end{vmatrix}
\end{bmatrix}=\begin{bmatrix}
4 \\
-2 \\
-5
\end{bmatrix}\] is perpendicular to the plane $P$.

Therefore, the vector $\mathbf{v}$ is on the plane if and only if the dot (inner) product
\[\mathbf{v}\cdot (\mathbf{v}_1\times \mathbf{v}_2)=0.\] Namely,
\[\begin{bmatrix}
a \\
b \\
c
\end{bmatrix}\cdot \begin{bmatrix}
4 \\
-2 \\
-5
\end{bmatrix}=4a-2b-5c=0,\] and we obtained the same condition as in Solution 1.


FavoriteLoadingAdd to solve later

Sponsored Links

More from my site

  • Quiz 3. Condition that Vectors are Linearly Dependent/ Orthogonal Vectors are Linearly IndependentQuiz 3. Condition that Vectors are Linearly Dependent/ Orthogonal Vectors are Linearly Independent (a) For what value(s) of $a$ is the following set $S$ linearly dependent? \[ S=\left \{\,\begin{bmatrix} 1 \\ 2 \\ 3 \\ a \end{bmatrix}, \begin{bmatrix} a \\ 0 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ a^2 […]
  • Subset of Vectors Perpendicular to Two Vectors is a SubspaceSubset of Vectors Perpendicular to Two Vectors is a Subspace Let $\mathbf{a}$ and $\mathbf{b}$ be fixed vectors in $\R^3$, and let $W$ be the subset of $\R^3$ defined by \[W=\{\mathbf{x}\in \R^3 \mid \mathbf{a}^{\trans} \mathbf{x}=0 \text{ and } \mathbf{b}^{\trans} \mathbf{x}=0\}.\] Prove that the subset $W$ is a subspace of […]
  • Find the Inverse Matrix of a Matrix With FractionsFind the Inverse Matrix of a Matrix With Fractions Find the inverse matrix of the matrix \[A=\begin{bmatrix} \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\[6 pt] \frac{6}{7} &\frac{2}{7} &-\frac{3}{7} \\[6pt] -\frac{3}{7} & \frac{6}{7} & -\frac{2}{7} \end{bmatrix}.\]   Hint. You may use the augmented matrix […]
  • Rotation Matrix in Space and its Determinant and EigenvaluesRotation Matrix in Space and its Determinant and Eigenvalues For a real number $0\leq \theta \leq \pi$, we define the real $3\times 3$ matrix $A$ by \[A=\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta &\cos\theta &0 \\ 0 & 0 & 1 \end{bmatrix}.\] (a) Find the determinant of the matrix $A$. (b) Show that $A$ is an […]
  • Orthonormal Basis of Null Space and Row SpaceOrthonormal Basis of Null Space and Row Space Let $A=\begin{bmatrix} 1 & 0 & 1 \\ 0 &1 &0 \end{bmatrix}$. (a) Find an orthonormal basis of the null space of $A$. (b) Find the rank of $A$. (c) Find an orthonormal basis of the row space of $A$. (The Ohio State University, Linear Algebra Exam […]
  • Give a Formula for a Linear Transformation if the Values on Basis Vectors are KnownGive a Formula for a Linear Transformation if the Values on Basis Vectors are Known Let $T: \R^2 \to \R^2$ be a linear transformation. Let \[ \mathbf{u}=\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \mathbf{v}=\begin{bmatrix} 3 \\ 5 \end{bmatrix}\] be 2-dimensional vectors. Suppose that \begin{align*} T(\mathbf{u})&=T\left( \begin{bmatrix} 1 \\ […]
  • Find a Basis For the Null Space of a Given $2\times 3$ MatrixFind a Basis For the Null Space of a Given $2\times 3$ Matrix Let \[A=\begin{bmatrix} 1 & 1 & 0 \\ 1 &1 &0 \end{bmatrix}\] be a matrix. Find a basis of the null space of the matrix $A$. (Remark: a null space is also called a kernel.)   Solution. The null space $\calN(A)$ of the matrix $A$ is by […]
  • Prove the Cauchy-Schwarz InequalityProve the Cauchy-Schwarz Inequality Let $\mathbf{a}, \mathbf{b}$ be vectors in $\R^n$. Prove the Cauchy-Schwarz inequality: \[|\mathbf{a}\cdot \mathbf{b}|\leq ||\mathbf{a}||\,||\mathbf{b}||.\] Here $\mathbf{a}\cdot \mathbf{b}$ is the dot (inner) product of $\mathbf{a}$ and $\mathbf{b}$, and $||\mathbf{a}||$ is […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Linear Algebra
Linear Algebra Problems and Solutions
Intersection of Two Null Spaces is Contained in Null Space of Sum of Two Matrices

Let $A$ and $B$ be $n\times n$ matrices. Then prove that \[\calN(A)\cap \calN(B) \subset \calN(A+B),\] where $\calN(A)$ is the null...

Close