Let $n$ be a positive integer.
Since $G/N$ is a cyclic group, let $g$ be a generator of $G/N$.
So we have $G/N=\langle g\rangle$.
Then $\langle g^n \rangle$ is a subgroup of $G/N$ of index $n$.

By the fourth isomorphism theorem, every subgroup of $G/N$ is of the form $H/N$ for some subgroup $H$ of $G$ containing $N$.
Thus we have $\langle g^n \rangle=H/N$ for some subgroup $H$ in $G$ containing $N$.

Since $G/N$ is cyclic, it is in particular abelian.
Thus $H/N$ is a normal subgroup of $G/N$.

The fourth isomorphism theorem also implies that $H$ is a normal subgroup of $G$, and we have
\begin{align*}
[G:H]=[G/N : H/N]=n.
\end{align*}
Hence $H$ is a normal subgroup of $G$ of index $n$.

Fundamental Theorem of Finitely Generated Abelian Groups and its application
In this post, we study the Fundamental Theorem of Finitely Generated Abelian Groups, and as an application we solve the following problem.
Problem.
Let $G$ be a finite abelian group of order $n$.
If $n$ is the product of distinct prime numbers, then prove that $G$ is isomorphic […]

Any Finite Group Has a Composition Series
Let $G$ be a finite group. Then show that $G$ has a composition series.
Proof.
We prove the statement by induction on the order $|G|=n$ of the finite group.
When $n=1$, this is trivial.
Suppose that any finite group of order less than $n$ has a composition […]

If Quotient $G/H$ is Abelian Group and $H < K \triangleleft G$, then $G/K$ is Abelian
Let $H$ and $K$ be normal subgroups of a group $G$.
Suppose that $H < K$ and the quotient group $G/H$ is abelian.
Then prove that $G/K$ is also an abelian group.
Solution.
We will give two proofs.
Hint (The third isomorphism theorem)
Recall the third […]

Isomorphism Criterion of Semidirect Product of Groups
Let $A$, $B$ be groups. Let $\phi:B \to \Aut(A)$ be a group homomorphism.
The semidirect product $A \rtimes_{\phi} B$ with respect to $\phi$ is a group whose underlying set is $A \times B$ with group operation
\[(a_1, b_1)\cdot (a_2, b_2)=(a_1\phi(b_1)(a_2), b_1b_2),\]
where $a_i […]

Normal Subgroups, Isomorphic Quotients, But Not Isomorphic
Let $G$ be a group. Suppose that $H_1, H_2, N_1, N_2$ are all normal subgroup of $G$, $H_1 \lhd N_2$, and $H_2 \lhd N_2$.
Suppose also that $N_1/H_1$ is isomorphic to $N_2/H_2$. Then prove or disprove that $N_1$ is isomorphic to $N_2$.
Proof.
We give a […]

If the Quotient Ring is a Field, then the Ideal is Maximal
Let $R$ be a ring with unit $1\neq 0$.
Prove that if $M$ is an ideal of $R$ such that $R/M$ is a field, then $M$ is a maximal ideal of $R$.
(Do not assume that the ring $R$ is commutative.)
Proof.
Let $I$ be an ideal of $R$ such that
\[M \subset I \subset […]

A Simple Abelian Group if and only if the Order is a Prime Number
Let $G$ be a group. (Do not assume that $G$ is a finite group.)
Prove that $G$ is a simple abelian group if and only if the order of $G$ is a prime number.
Definition.
A group $G$ is called simple if $G$ is a nontrivial group and the only normal subgroups of $G$ is […]

Group of Order 18 is Solvable
Let $G$ be a finite group of order $18$.
Show that the group $G$ is solvable.
Definition
Recall that a group $G$ is said to be solvable if $G$ has a subnormal series
\[\{e\}=G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_n=G\]
such […]