If the Quotient is an Infinite Cyclic Group, then Exists a Normal Subgroup of Index $n$

Normal Subgroups Problems and Solutions in Group Theory

Problem 557

Let $N$ be a normal subgroup of a group $G$.
Suppose that $G/N$ is an infinite cyclic group.

Then prove that for each positive integer $n$, there exists a normal subgroup $H$ of $G$ of index $n$.

 
FavoriteLoadingAdd to solve later

Sponsored Links

Hint.

Use the fourth (or Lattice) isomorphism theorem.

Proof.

Let $n$ be a positive integer.
Since $G/N$ is a cyclic group, let $g$ be a generator of $G/N$.
So we have $G/N=\langle g\rangle$.
Then $\langle g^n \rangle$ is a subgroup of $G/N$ of index $n$.


By the fourth isomorphism theorem, every subgroup of $G/N$ is of the form $H/N$ for some subgroup $H$ of $G$ containing $N$.
Thus we have $\langle g^n \rangle=H/N$ for some subgroup $H$ in $G$ containing $N$.

Since $G/N$ is cyclic, it is in particular abelian.
Thus $H/N$ is a normal subgroup of $G/N$.

The fourth isomorphism theorem also implies that $H$ is a normal subgroup of $G$, and we have
\begin{align*}
[G:H]=[G/N : H/N]=n.
\end{align*}
Hence $H$ is a normal subgroup of $G$ of index $n$.


FavoriteLoadingAdd to solve later

Sponsored Links

More from my site

  • Fundamental Theorem of Finitely Generated Abelian Groups and its applicationFundamental Theorem of Finitely Generated Abelian Groups and its application In this post, we study the Fundamental Theorem of Finitely Generated Abelian Groups, and as an application we solve the following problem. Problem. Let $G$ be a finite abelian group of order $n$. If $n$ is the product of distinct prime numbers, then prove that $G$ is isomorphic […]
  • Any Finite Group Has a Composition SeriesAny Finite Group Has a Composition Series Let $G$ be a finite group. Then show that $G$ has a composition series.   Proof. We prove the statement by induction on the order $|G|=n$ of the finite group. When $n=1$, this is trivial. Suppose that any finite group of order less than $n$ has a composition […]
  • If Quotient $G/H$ is Abelian Group and $H < K \triangleleft G$, then $G/K$ is AbelianIf Quotient $G/H$ is Abelian Group and $H < K \triangleleft G$, then $G/K$ is Abelian Let $H$ and $K$ be normal subgroups of a group $G$. Suppose that $H < K$ and the quotient group $G/H$ is abelian. Then prove that $G/K$ is also an abelian group.   Solution. We will give two proofs. Hint (The third isomorphism theorem) Recall the third […]
  • Isomorphism Criterion of Semidirect Product of GroupsIsomorphism Criterion of Semidirect Product of Groups Let $A$, $B$ be groups. Let $\phi:B \to \Aut(A)$ be a group homomorphism. The semidirect product $A \rtimes_{\phi} B$ with respect to $\phi$ is a group whose underlying set is $A \times B$ with group operation \[(a_1, b_1)\cdot (a_2, b_2)=(a_1\phi(b_1)(a_2), b_1b_2),\] where $a_i […]
  • Normal Subgroups, Isomorphic Quotients, But Not IsomorphicNormal Subgroups, Isomorphic Quotients, But Not Isomorphic Let $G$ be a group. Suppose that $H_1, H_2, N_1, N_2$ are all normal subgroup of $G$, $H_1 \lhd N_2$, and $H_2 \lhd N_2$. Suppose also that $N_1/H_1$ is isomorphic to $N_2/H_2$. Then prove or disprove that $N_1$ is isomorphic to $N_2$.   Proof. We give a […]
  • If the Quotient Ring is a Field, then the Ideal is MaximalIf the Quotient Ring is a Field, then the Ideal is Maximal Let $R$ be a ring with unit $1\neq 0$. Prove that if $M$ is an ideal of $R$ such that $R/M$ is a field, then $M$ is a maximal ideal of $R$. (Do not assume that the ring $R$ is commutative.)   Proof. Let $I$ be an ideal of $R$ such that \[M \subset I \subset […]
  • A Simple Abelian Group if and only if the Order is a Prime NumberA Simple Abelian Group if and only if the Order is a Prime Number Let $G$ be a group. (Do not assume that $G$ is a finite group.) Prove that $G$ is a simple abelian group if and only if the order of $G$ is a prime number.   Definition. A group $G$ is called simple if $G$ is a nontrivial group and the only normal subgroups of $G$ is […]
  • Group of Order 18 is SolvableGroup of Order 18 is Solvable Let $G$ be a finite group of order $18$. Show that the group $G$ is solvable.   Definition Recall that a group $G$ is said to be solvable if $G$ has a subnormal series \[\{e\}=G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_n=G\] such […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Group Theory
Group Theory Problems and Solutions in Mathematics
If Generators $x, y$ Satisfy the Relation $xy^2=y^3x$, $yx^2=x^3y$, then the Group is Trivial

Let $x, y$ be generators of a group $G$ with relation \begin{align*} xy^2=y^3x,\tag{1}\\ yx^2=x^3y.\tag{2} \end{align*} Prove that $G$ is the...

Close