## Problem 91

Show that the matrix $A=\begin{bmatrix} 1 & \alpha\\ 0& 1 \end{bmatrix}$, where $\alpha$ is an element of a field $F$ of characteristic $p>0$ satisfies $A^p=I$ and the matrix is not diagonalizable over $F$ if $\alpha \neq 0$.

## Problem 90

Find the largest prime number less than one million.

## Problem 89

Prove that the polynomial $x^p-2$ for a prime number $p$ is irreducible over the field $\Q(\zeta_p)$, where $\zeta_p$ is a primitive $p$th root of unity.

## Problem 88

A complex number $z$ is called algebraic number (respectively, algebraic integer) if $z$ is a root of a monic polynomial with rational (respectively, integer) coefficients.

Prove that $z \in \C$ is an algebraic number (resp. algebraic integer) if and only if $z$ is an eigenvalue of a matrix with rational (resp. integer) entries.

## Problem 87

Find a cubic polynomial
$p(x)=a+bx+cx^2+dx^3$ such that $p(1)=1, p'(1)=5, p(-1)=3$, and $p'(-1)=1$.

## Problem 86

• Linear Equations
• Matrix entries.

## Problem 85

Consider a polynomial
$p(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0,$ where $a_i$ are real numbers.
Define the matrix
$A=\begin{bmatrix} 0 & 0 & \dots & 0 &-a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \dots & 1 & -a_{n-1} \end{bmatrix}.$

Then prove that the characteristic polynomial $\det(xI-A)$ of $A$ is the polynomial $p(x)$.
The matrix is called the companion matrix of the polynomial $p(x)$.

## Problem 84

Let $A$ be an $n \times n$ complex matrix such that $A^k=I$, where $I$ is the $n \times n$ identity matrix.

Show that the matrix $A$ is diagonalizable.

## Problem 83

Let $f(x)$ be an irreducible polynomial of degree $n$ over a field $F$. Let $g(x)$ be any polynomial in $F[x]$.

Show that the degree of each irreducible factor of the composite polynomial $f(g(x))$ is divisible by $n$.

## Problem 82

Show that the polynomial $x^3-\sqrt{2}$ is irreducible over the field $\Q(\sqrt{2})$.

## Problem 81

Let $G$ be a group of order $|G|=pqr$, where $p,q,r$ are prime numbers such that $p<q<r$.

Show that $G$ has a normal subgroup of order either $p,q$ or $r$.

## Problem 80

Let $V$ be a finite dimensional vector space over a field $K$ and let $\End (V)$ be the vector space of linear transformations from $V$ to $V$.
Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a basis for $V$.
Show that the map $\phi:\End (V) \to V^{\oplus n}$ defined by $f\mapsto (f(\mathbf{v}_1), \dots, f(\mathbf{v}_n))$ is an isomorphism.
Here $V^{\oplus n}=V\oplus \dots \oplus V$, the direct sum of $n$ copies of $V$.

## Problem 79

Let $V$ be the set of all $n \times n$ diagonal matrices whose traces are zero.
That is,

\begin{equation*}
V:=\left\{ A=\begin{bmatrix}
a_{11} & 0 & \dots & 0 \\
0 &a_{22} & \dots & 0 \\
0 & 0 & \ddots & \vdots \\
0 & 0 & \dots & a_{nn}
\begin{array}{l}
a_{11}, \dots, a_{nn} \in \C,\\
\tr(A)=0 \\
\end{array}
\right\}
\end{equation*}

Let $E_{ij}$ denote the $n \times n$ matrix whose $(i,j)$-entry is $1$ and zero elsewhere.

(a) Show that $V$ is a subspace of the vector space $M_n$ over $\C$ of all $n\times n$ matrices. (You may assume without a proof that $M_n$ is a vector space.)

(b) Show that matrices
$E_{11}-E_{22}, \, E_{22}-E_{33}, \, \dots,\, E_{n-1\, n-1}-E_{nn}$ are a basis for the vector space $V$.

(c) Find the dimension of $V$.

## Problem 78

Determine whether the following sentence is True or False.

(Purdue University Linear Algebra Exam)

## Problem 77

A square matrix $A$ is called nilpotent if there exists a positive integer $k$ such that $A^k=O$, where $O$ is the zero matrix.

(a) If $A$ is a nilpotent $n \times n$ matrix and $B$ is an $n\times n$ matrix such that $AB=BA$. Show that the product $AB$ is nilpotent.

(b) Let $P$ be an invertible $n \times n$ matrix and let $N$ be a nilpotent $n\times n$ matrix. Is the product $PN$ nilpotent? If so, prove it. If not, give a counterexample.

## Problem 76

Let A be the matrix
$\begin{bmatrix} 1 & -1 & 0 \\ 0 &1 &-1 \\ 0 & 0 & 1 \end{bmatrix}.$ Is the matrix $A$ invertible? If not, then explain why it isn’t invertible. If so, then find the inverse.

(The Ohio State University Linear Algebra Exam)

## Problem 75

Let $\Q$ denote the set of rational numbers (i.e., fractions of integers). Let $V$ denote the set of the form $x+y \sqrt{2}$ where $x,y \in \Q$. You may take for granted that the set $V$ is a vector space over the field $\Q$.

(a) Show that $B=\{1, \sqrt{2}\}$ is a basis for the vector space $V$ over $\Q$.

(b) Let $\alpha=a+b\sqrt{2} \in V$, and let $T_{\alpha}: V \to V$ be the map defined by
$T_{\alpha}(x+y\sqrt{2}):=(ax+2by)+(ay+bx)\sqrt{2}\in V$ for any $x+y\sqrt{2} \in V$.
Show that $T_{\alpha}$ is a linear transformation.

(c) Let $\begin{bmatrix} x \\ y \end{bmatrix}_B=x+y \sqrt{2}$.
Find the matrix $T_B$ such that
$T_{\alpha} (x+y \sqrt{2})=\left( T_B\begin{bmatrix} x \\ y \end{bmatrix}\right)_B,$ and compute $\det T_B$.

(The Ohio State University, Linear Algebra Exam)

## Problem 74

(a) Show that if a group $G$ has the following order, then it is not simple.

1. $28$
2. $496$
3. $8128$

(b) Show that if the order of a group $G$ is equal to an even perfect number then the group is not simple.

## Problem 73

Let $c_1, c_2,\dots, c_n$ be mutually distinct real numbers.

Show that exponential functions
$e^{c_1x}, e^{c_2x}, \dots, e^{c_nx}$ are linearly independent over $\R$.

## Problem 72

(a) Let $A=(a_{ij})$ be an $n\times n$ matrix. Suppose that the entries of the matrix $A$ satisfy the following relation.
$|a_{ii}|>|a_{i1}|+\cdots +|a_{i\,i-1}|+|a_{i \, i+1}|+\cdots +|a_{in}|$ for all $1 \leq i \leq n$.
Show that the matrix $A$ is nonsingular.

(b) Let $B=(b_{ij})$ be an $n \times n$ matrix whose entries satisfy the relation
$|b_{i\,i}|=1 \hspace{0.5cm} \text{ and }\hspace{0.5cm} |b_{ij}|<\frac{1}{n-1}$ for all $i$ and $j$ with $i \neq j$.
Prove that the matrix $B$ is nonsingular.

(c)
Determine whether the following matrix is nonsingular or not.
$C=\begin{bmatrix} \pi & e & e^2/2\pi^2 \\[5 pt] e^2/2\pi^2 &\pi &e \\[5pt] e & e^2/2\pi^2 & \pi \end{bmatrix},$ where $\pi=3.14159\dots$, and $e=2.71828\dots$ is Euler’s number (or Napier’s constant).