Find Inverse Matrices Using Adjoint Matrices

Problems and solutions in Linear Algebra

Problem 546

Let $A$ be an $n\times n$ matrix.

The $(i, j)$ cofactor $C_{ij}$ of $A$ is defined to be
\[C_{ij}=(-1)^{ij}\det(M_{ij}),\] where $M_{ij}$ is the $(i,j)$ minor matrix obtained from $A$ removing the $i$-th row and $j$-th column.

Then consider the $n\times n$ matrix $C=(C_{ij})$, and define the $n\times n$ matrix $\Adj(A)=C^{\trans}$.
The matrix $\Adj(A)$ is called the adjoint matrix of $A$.

When $A$ is invertible, then its inverse can be obtained by the formula

\[A^{-1}=\frac{1}{\det(A)}\Adj(A).\]

For each of the following matrices, determine whether it is invertible, and if so, then find the invertible matrix using the above formula.

(a) $A=\begin{bmatrix}
1 & 5 & 2 \\
0 &-1 &2 \\
0 & 0 & 1
\end{bmatrix}$.

 
(b) $B=\begin{bmatrix}
1 & 0 & 2 \\
0 &1 &4 \\
3 & 0 & 1
\end{bmatrix}$.

 
LoadingAdd to solve later

Sponsored Links


Solution.

(a) The Inverse Matrix of $A$.

Since $A$ is an upper triangular matrix, the determinant of $A$ is the product of diagonal entries.
Thus we have $\det(A)=-1\neq 0$, and hence $A$ is invertible.

To find the inverse using the formula, we first determine the cofactors $C_{ij}$ of $A$.
We have
\begin{align*}
C_{11}&=\begin{vmatrix}
-1 & 2\\
0& 1
\end{vmatrix}=-1,\quad C_{12}=-\begin{vmatrix}
0 & 2\\
0& 1
\end{vmatrix}=0, \quad C_{13}=\begin{vmatrix}
0 & -1\\
0& 0
\end{vmatrix}=0\\[6pt] C_{21}&=-\begin{vmatrix}
5 & 2\\
0& 1
\end{vmatrix}=-5, \quad C_{22}=\begin{vmatrix}
1 & 2\\
0& 1
\end{vmatrix}=1, \quad C_{23}=-\begin{vmatrix}
1 & 5\\
0& 0
\end{vmatrix}=0 \\[6pt] C_{31}&=\begin{vmatrix}
5 & 2\\
-1& 2
\end{vmatrix}=12, \quad C_{32}=-\begin{vmatrix}
1 & 2\\
0& 2
\end{vmatrix}=-2, \quad C_{33}=\begin{vmatrix}
1 & 5\\
0& -1
\end{vmatrix}=-1.
\end{align*}
The the adjoint matrix of $A$ is
\begin{align*}
\Adj(A)=C^{\trans}=\begin{bmatrix}
-1 & -5 & 12 \\
0 &1 &-2 \\
0 & 0 & -1
\end{bmatrix}.
\end{align*}

Using the formula, we obtain the inverse matrix
\[A^{-1}=\frac{1}{\det(A)}\Adj(A)=\begin{bmatrix}
1 & 5 & -12 \\
0 &-1 &2 \\
0 & 0 & 1
\end{bmatrix}.\]

(b) The Inverse Matrix of $B$.

To check the invertibility of the matrix $B$, we compute the determinant of $B$.
The second column cofactor expansion yields that
\begin{align*}
\det(B)=\begin{vmatrix}
1 & 2\\
3& 1
\end{vmatrix}=-5 \neq 0.
\end{align*}
So the matrix $B$ is invertible.

Now the cofactors $C_{ij}$ of $B$ are
\begin{align*}
C_{11}&=\begin{vmatrix}
1 & 4\\
0& 1
\end{vmatrix}=1, \quad C_{12}=-\begin{vmatrix}
0 & 4\\
3& 1
\end{vmatrix}=12. \quad C_{13}=\begin{vmatrix}
0 & 1\\
3& 0
\end{vmatrix}=-3 \\[6pt] C_{21}&=-\begin{vmatrix}
0 & 2\\
0& 1
\end{vmatrix}=0, \quad C_{22}=\begin{vmatrix}
1 & 2\\
3& 1
\end{vmatrix}=-5, \quad C_{23}=-\begin{vmatrix}
1 & 0\\
3& 0
\end{vmatrix}=0 \\[6pt] C_{31}&=\begin{vmatrix}
0 & 2\\
1& 4
\end{vmatrix}=-2, \quad C_{32}=-\begin{vmatrix}
1 & 2\\
0& 4
\end{vmatrix}=-4, \quad C_{33}=\begin{vmatrix}
1 & 0\\
0& 1
\end{vmatrix}=1.
\end{align*}
Hence the adjoint matrix of $B$ is
\[\Adj(B)=C^{\trans}=\begin{bmatrix}
1 & 0 & -2 \\
12 &-5 &-4 \\
-3 & 0 & 1
\end{bmatrix}.\] It follows from the formula that the inverse matrix of $B$ is
\[B^{-1}=\frac{1}{\det(B)}\Adj(B)=\frac{1}{5}\begin{bmatrix}
-1 & 0 & 2 \\
-12 &5 &4 \\
3 & 0 & -1
\end{bmatrix}.\]


LoadingAdd to solve later

Sponsored Links

More from my site

  • For Which Choices of $x$ is the Given Matrix Invertible?For Which Choices of $x$ is the Given Matrix Invertible? Determine the values of $x$ so that the matrix \[A=\begin{bmatrix} 1 & 1 & x \\ 1 &x &x \\ x & x & x \end{bmatrix}\] is invertible. For those values of $x$, find the inverse matrix $A^{-1}$.   Solution. We use the fact that a matrix is invertible […]
  • Inverse Matrix Contains Only Integers if and only if the Determinant is $\pm 1$Inverse Matrix Contains Only Integers if and only if the Determinant is $\pm 1$ Let $A$ be an $n\times n$ nonsingular matrix with integer entries. Prove that the inverse matrix $A^{-1}$ contains only integer entries if and only if $\det(A)=\pm 1$.   Hint. If $B$ is a square matrix whose entries are integers, then the […]
  • Find All Values of $x$ such that the Matrix is InvertibleFind All Values of $x$ such that the Matrix is Invertible Given any constants $a,b,c$ where $a\neq 0$, find all values of $x$ such that the matrix $A$ is invertible if \[ A= \begin{bmatrix} 1 & 0 & c \\ 0 & a & -b \\ -1/a & x & x^{2} \end{bmatrix} . \]   Solution. We know that $A$ is invertible precisely when […]
  • Find All the Eigenvalues of Power of Matrix and Inverse MatrixFind All the Eigenvalues of Power of Matrix and Inverse Matrix Let \[A=\begin{bmatrix} 3 & -12 & 4 \\ -1 &0 &-2 \\ -1 & 5 & -1 \end{bmatrix}.\] Then find all eigenvalues of $A^5$. If $A$ is invertible, then find all the eigenvalues of $A^{-1}$.   Proof. We first determine all the eigenvalues of the matrix […]
  • Calculate Determinants of MatricesCalculate Determinants of Matrices Calculate the determinants of the following $n\times n$ matrices. \[A=\begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 &1 \\ 1 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots […]
  • Quiz 4: Inverse Matrix/ Nonsingular Matrix Satisfying a RelationQuiz 4: Inverse Matrix/ Nonsingular Matrix Satisfying a Relation (a) Find the inverse matrix of \[A=\begin{bmatrix} 1 & 0 & 1 \\ 1 &0 &0 \\ 2 & 1 & 1 \end{bmatrix}\] if it exists. If you think there is no inverse matrix of $A$, then give a reason. (b) Find a nonsingular $2\times 2$ matrix $A$ such that \[A^3=A^2B-3A^2,\] where […]
  • Compute the Determinant of a Magic SquareCompute the Determinant of a Magic Square Let \[ A= \begin{bmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{bmatrix} . \] Notice that $A$ contains every integer from $1$ to $9$ and that the sums of each row, column, and diagonal of $A$ are equal. Such a grid is sometimes called a magic […]
  • Find the Inverse Matrix Using the Cayley-Hamilton TheoremFind the Inverse Matrix Using the Cayley-Hamilton Theorem Find the inverse matrix of the matrix \[A=\begin{bmatrix} 1 & 1 & 2 \\ 9 &2 &0 \\ 5 & 0 & 3 \end{bmatrix}\] using the Cayley–Hamilton theorem.   Solution. To use the Cayley-Hamilton theorem, we first compute the characteristic polynomial $p(t)$ of […]

You may also like...

1 Response

  1. sehar says:

    thanks i got my ans : )

Click here to cancel reply.

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
Every $n$-Dimensional Vector Space is Isomorphic to the Vector Space $\R^n$

Let $V$ be a vector space over the field of real numbers $\R$. Prove that if the dimension of $V$...

Close