# Category: Linear Algebra

## Problem 388

Let $A$ be $n\times n$ matrix and let $\lambda_1, \lambda_2, \dots, \lambda_n$ be all the eigenvalues of $A$. (Some of them may be the same.)

For each positive integer $k$, prove that $\lambda_1^k, \lambda_2^k, \dots, \lambda_n^k$ are all the eigenvalues of $A^k$.

## Problem 387

Let $A$ be an $n\times n$ matrix. Its only eigenvalues are $1, 2, 3, 4, 5$, possibly with multiplicities.

What is the nullity of the matrix $A+I_n$, where $I_n$ is the $n\times n$ identity matrix?

(The Ohio State University, Linear Algebra Final Exam Problem)

## Problem 386

Find all eigenvalues of the matrix
$A=\begin{bmatrix} 0 & i & i & i \\ i &0 & i & i \\ i & i & 0 & i \\ i & i & i & 0 \end{bmatrix},$ where $i=\sqrt{-1}$. For each eigenvalue of $A$, determine its algebraic multiplicity and geometric multiplicity.

## Problem 385

Let
$A=\begin{bmatrix} 2 & -1 & -1 \\ -1 &2 &-1 \\ -1 & -1 & 2 \end{bmatrix}.$ Determine whether the matrix $A$ is diagonalizable. If it is diagonalizable, then diagonalize $A$.
That is, find a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$.

## Problem 384

Let $A$ be an $n\times n$ matrix with the characteristic polynomial
$p(t)=t^3(t-1)^2(t-2)^5(t+2)^4.$ Assume that the matrix $A$ is diagonalizable.

(a) Find the size of the matrix $A$.

(b) Find the dimension of the eigenspace $E_2$ corresponding to the eigenvalue $\lambda=2$.

(c) Find the nullity of $A$.

(The Ohio State University, Linear Algebra Final Exam Problem)

## Problem 383

Let
$A=\begin{bmatrix} 1 & 1 & 1 \\ 0 &0 &1 \\ 0 & 0 & 1 \end{bmatrix}$ be a $3\times 3$ matrix. Then find the formula for $A^n$ for any positive integer $n$.

## Problem 382

Let $\lambda$ be an eigenvalue of $n\times n$ matrices $A$ and $B$ corresponding to the same eigenvector $\mathbf{x}$.

(a) Show that $2\lambda$ is an eigenvalue of $A+B$ corresponding to $\mathbf{x}$.

(b) Show that $\lambda^2$ is an eigenvalue of $AB$ corresponding to $\mathbf{x}$.

(The Ohio State University, Linear Algebra Final Exam Problem)

## Problem 381

Consider the matrix
$A=\begin{bmatrix} 3/2 & 2\\ -1& -3/2 \end{bmatrix} \in M_{2\times 2}(\R).$

(a) Find the eigenvalues and corresponding eigenvectors of $A$.

(b) Show that for $\mathbf{v}=\begin{bmatrix} 1 \\ 0 \end{bmatrix}\in \R^2$, we can choose $n$ large enough so that the length $\|A^n\mathbf{v}\|$ is as small as we like.

(University of California, Berkeley, Linear Algebra Final Exam Problem)

## Problem 380

Find the determinant of the following matrix
$A=\begin{bmatrix} 6 & 2 & 2 & 2 &2 \\ 2 & 6 & 2 & 2 & 2 \\ 2 & 2 & 6 & 2 & 2 \\ 2 & 2 & 2 & 6 & 2 \\ 2 & 2 & 2 & 2 & 6 \end{bmatrix}.$

(Harvard University, Linear Algebra Exam Problem)

## Problem 379

Find all the eigenvalues and eigenvectors of the matrix
$A=\begin{bmatrix} 3 & 9 & 9 & 9 \\ 9 &3 & 9 & 9 \\ 9 & 9 & 3 & 9 \\ 9 & 9 & 9 & 3 \end{bmatrix}.$

(Harvard University, Linear Algebra Final Exam Problem)

## Problem 378

Let $A$ be an $n \times n$ matrix and let $c$ be a complex number.

(a) For each eigenvalue $\lambda$ of $A$, prove that $\lambda+c$ is an eigenvalue of the matrix $A+cI$, where $I$ is the identity matrix. What can you say about the eigenvectors corresponding to $\lambda+c$?

(b) Prove that the algebraic multiplicity of the eigenvalue $\lambda$ of $A$ is the same as the algebraic multiplicity of the eigenvalue $\lambda+c$ of $A+cI$ are equal.

## Problem 377

Let $A$ be an $n\times n$ idempotent complex matrix.
Then prove that $A$ is diagonalizable.

## Problem 376

(a) Let
$A=\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 &1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$ Find the eigenvalues of the matrix $A$. Also give the algebraic multiplicity of each eigenvalue.

(b) Let
$A=\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 &1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$ One of the eigenvalues of the matrix $A$ is $\lambda=0$. Find the geometric multiplicity of the eigenvalue $\lambda=0$.

## Problem 375

Let $n>1$ be a positive integer. Let $V=M_{n\times n}(\C)$ be the vector space over the complex numbers $\C$ consisting of all complex $n\times n$ matrices. The dimension of $V$ is $n^2$.
Let $A \in V$ and consider the set
$S_A=\{I=A^0, A, A^2, \dots, A^{n^2-1}\}$ of $n^2$ elements.
Prove that the set $S_A$ cannot be a basis of the vector space $V$ for any $A\in V$.

## Problem 374

Let $A=\begin{bmatrix} a_0 & a_1 & \dots & a_{n-2} &a_{n-1} \\ a_{n-1} & a_0 & \dots & a_{n-3} & a_{n-2} \\ a_{n-2} & a_{n-1} & \dots & a_{n-4} & a_{n-3} \\ \vdots & \vdots & \dots & \vdots & \vdots \\ a_{2} & a_3 & \dots & a_{0} & a_{1}\\ a_{1} & a_2 & \dots & a_{n-1} & a_{0} \end{bmatrix}$ be a complex $n \times n$ matrix.
Such a matrix is called circulant matrix.
Then prove that the determinant of the circulant matrix $A$ is given by
$\det(A)=\prod_{k=0}^{n-1}(a_0+a_1\zeta^k+a_2 \zeta^{2k}+\cdots+a_{n-1}\zeta^{k(n-1)}),$ where $\zeta=e^{2 \pi i/n}$ is a primitive $n$-th root of unity.

## Problem 373

Let $A$ be a $3\times 3$ matrix. Suppose that $A$ has eigenvalues $2$ and $-1$, and suppose that $\mathbf{u}$ and $\mathbf{v}$ are eigenvectors corresponding to $2$ and $-1$, respectively, where
$\mathbf{u}=\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \text{ and } \mathbf{v}=\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}.$ Then compute $A^5\mathbf{w}$, where
$\mathbf{w}=\begin{bmatrix} 7 \\ 2 \\ -3 \end{bmatrix}.$

## Problem 371

Let $S$ be the subset of $\R^4$ consisting of vectors $\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$ satisfying
$2x+3y+5z+7w=0.$ Then prove that the set $S$ is a subspace of $\R^4$.

(Linear Algebra Exam Problem, The Ohio State University)

## Problem 370

Let $T: \R^2 \to \R^2$ be a linear transformation such that
$T\left(\, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \,\right)=\begin{bmatrix} 4 \\ 1 \end{bmatrix}, T\left(\, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \,\right)=\begin{bmatrix} 3 \\ 2 \end{bmatrix}.$ Then find the matrix $A$ such that $T(\mathbf{x})=A\mathbf{x}$ for every $\mathbf{x}\in \R^2$, and find the rank and nullity of $T$.

(The Ohio State University, Linear Algebra Exam Problem)

## Problem 369

Let $T:\R^3 \to \R^2$ be a linear transformation such that
$T(\mathbf{e}_1)=\begin{bmatrix} 1 \\ 0 \end{bmatrix}, T(\mathbf{e}_2)=\begin{bmatrix} 0 \\ 1 \end{bmatrix}, T(\mathbf{e}_3)=\begin{bmatrix} 1 \\ 0 \end{bmatrix},$ where $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are the standard basis of $\R^3$.
Then find the rank and the nullity of $T$.

(The Ohio State University, Linear Algebra Exam Problem)

## Determine a Value of Linear Transformation From $\R^3$ to $\R^2$
Let $T$ be a linear transformation from $\R^3$ to $\R^2$ such that
$T\left(\, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}\,\right) =\begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ and }T\left(\, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}\,\right)=\begin{bmatrix} 0 \\ 1 \end{bmatrix}.$ Then find $T\left(\, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \,\right)$.