Category: Linear Algebra

Determine Whether Trigonometry Functions $\sin^2(x), \cos^2(x), 1$ are Linearly Independent or Dependent

Problem 365

Let $f(x)=\sin^2(x)$, $g(x)=\cos^2(x)$, and $h(x)=1$. These are vectors in $C[-1, 1]$.
Determine whether the set $\{f(x), \, g(x), \, h(x)\}$ is linearly dependent or linearly independent.

(The Ohio State University, Linear Algebra Midterm Exam Problem)
 

Read solution

FavoriteLoadingAdd to solve later

True or False Problems of Vector Spaces and Linear Transformations

Problem 364

These are True or False problems.
For each of the following statements, determine if it contains a wrong information or not.

  1. Let $A$ be a $5\times 3$ matrix. Then the range of $A$ is a subspace in $\R^3$.
  2. The function $f(x)=x^2+1$ is not in the vector space $C[-1,1]$ because $f(0)=1\neq 0$.
  3. Since we have $\sin(x+y)=\sin(x)+\sin(y)$, the function $\sin(x)$ is a linear transformation.
  4. The set
    \[\left\{\, \begin{bmatrix}
    1 \\
    0 \\
    0
    \end{bmatrix}, \begin{bmatrix}
    0 \\
    1 \\
    1
    \end{bmatrix} \,\right\}\] is an orthonormal set.

(Linear Algebra Exam Problem, The Ohio State University)

 

Read solution

FavoriteLoadingAdd to solve later

Quiz 11. Find Eigenvalues and Eigenvectors/ Properties of Determinants

Problem 363

(a) Find all the eigenvalues and eigenvectors of the matrix
\[A=\begin{bmatrix}
3 & -2\\
6& -4
\end{bmatrix}.\]

(b) Let
\[A=\begin{bmatrix}
1 & 0 & 3 \\
4 &5 &6 \\
7 & 0 & 9
\end{bmatrix} \text{ and } B=\begin{bmatrix}
2 & 0 & 0 \\
0 & 3 &0 \\
0 & 0 & 4
\end{bmatrix}.\] Then find the value of
\[\det(A^2B^{-1}A^{-2}B^2).\] (For part (b) without computation, you may assume that $A$ and $B$ are invertible matrices.)

 

Read solution

FavoriteLoadingAdd to solve later

Quiz 10. Find Orthogonal Basis / Find Value of Linear Transformation

Problem 356

(a) Let $S=\{\mathbf{v}_1, \mathbf{v}_2\}$ be the set of the following vectors in $\R^4$.
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
0 \\
1 \\
0
\end{bmatrix} \text{ and } \mathbf{v}_2=\begin{bmatrix}
0 \\
1 \\
1 \\
0
\end{bmatrix}.\] Find an orthogonal basis of the subspace $\Span(S)$ of $\R^4$.

 
(b) Let $T:\R^2 \to \R^3$ be a linear transformation such that
\[T(\mathbf{e}_1)=\mathbf{u}_1 \text{ and } T(\mathbf{e}_2)=\mathbf{u}_2,\] where $\{\mathbf{e}_1, \mathbf{e}_2\}$ is the standard unit vectors of $\R^2$ and
\[\mathbf{u}_1=\begin{bmatrix}
5 \\
1 \\
2
\end{bmatrix} \text{ and } \mathbf{u}_2=\begin{bmatrix}
8 \\
2 \\
6
\end{bmatrix}.\] Then find
\[T\left(\, \begin{bmatrix}
3 \\
-2
\end{bmatrix} \,\right).\]

 

Read solution

FavoriteLoadingAdd to solve later

Prove the Cauchy-Schwarz Inequality

Problem 355

Let $\mathbf{a}, \mathbf{b}$ be vectors in $\R^n$.
Prove the Cauchy-Schwarz inequality:
\[|\mathbf{a}\cdot \mathbf{b}|\leq ||\mathbf{a}||\,||\mathbf{b}||.\]

Here $\mathbf{a}\cdot \mathbf{b}$ is the dot (inner) product of $\mathbf{a}$ and $\mathbf{b}$, and $||\mathbf{a}||$ is the length (norm) of the vector $\mathbf{a}$.

 

Read solution

FavoriteLoadingAdd to solve later

Find a General Formula of a Linear Transformation From $\R^2$ to $\R^3$

Problem 353

Suppose that $T: \R^2 \to \R^3$ is a linear transformation satisfying
\[T\left(\, \begin{bmatrix}
1 \\
2
\end{bmatrix}\,\right)=\begin{bmatrix}
3 \\
4 \\
5
\end{bmatrix} \text{ and } T\left(\, \begin{bmatrix}
0 \\
1
\end{bmatrix} \,\right)=\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}.\] Find a general formula for
\[T\left(\, \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} \,\right).\]

(The Ohio State University, Linear Algebra Math 2568 Exam Problem)

 

Read solution

FavoriteLoadingAdd to solve later

Hyperplane in $n$-Dimensional Space Through Origin is a Subspace

Problem 352

A hyperplane in $n$-dimensional vector space $\R^n$ is defined to be the set of vectors
\[\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}\in \R^n\] satisfying the linear equation of the form
\[a_1x_1+a_2x_2+\cdots+a_nx_n=b,\] where $a_1, a_2, \dots, a_n$ (at least one of $a_1, a_2, \dots, a_n$ is nonzero) and $b$ are real numbers.
Here at least one of $a_1, a_2, \dots, a_n$ is nonzero.

Consider the hyperplane $P$ in $\R^n$ described by the linear equation
\[a_1x_1+a_2x_2+\cdots+a_nx_n=0,\] where $a_1, a_2, \dots, a_n$ are some fixed real numbers and not all of these are zero.
(The constant term $b$ is zero.)

Then prove that the hyperplane $P$ is a subspace of $R^{n}$ of dimension $n-1$.

 

Read solution

FavoriteLoadingAdd to solve later

Coordinate Vectors and Dimension of Subspaces (Span)

Problem 350

Let $V$ be a vector space over $\R$ and let $B$ be a basis of $V$.
Let $S=\{v_1, v_2, v_3\}$ be a set of vectors in $V$. If the coordinate vectors of these vectors with respect to the basis $B$ is given as follows, then find the dimension of $V$ and the dimension of the span of $S$.
\[[v_1]_B=\begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix}, [v_2]_B=\begin{bmatrix}
0 \\
1 \\
0 \\
0
\end{bmatrix}, [v_3]_B=\begin{bmatrix}
1 \\
1 \\
0 \\
0
\end{bmatrix}.\]

 

Read solution

FavoriteLoadingAdd to solve later

Quiz 9. Find a Basis of the Subspace Spanned by Four Matrices

Problem 349

Let $V$ be the vector space of all $2\times 2$ real matrices.
Let $S=\{A_1, A_2, A_3, A_4\}$, where
\[A_1=\begin{bmatrix}
1 & 2\\
-1& 3
\end{bmatrix}, A_2=\begin{bmatrix}
0 & -1\\
1& 4
\end{bmatrix}, A_3=\begin{bmatrix}
-1 & 0\\
1& -10
\end{bmatrix}, A_4=\begin{bmatrix}
3 & 7\\
-2& 6
\end{bmatrix}.\] Then find a basis for the span $\Span(S)$.

 

Read solution

FavoriteLoadingAdd to solve later

Condition that a Matrix is Similar to the Companion Matrix of its Characteristic Polynomial

Problem 348

Let $A$ be an $n\times n$ complex matrix.
Let $p(x)=\det(xI-A)$ be the characteristic polynomial of $A$ and write it as
\[p(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0,\] where $a_i$ are real numbers.

Let $C$ be the companion matrix of the polynomial $p(x)$ given by
\[C=\begin{bmatrix}
0 & 0 & \dots & 0 &-a_0 \\
1 & 0 & \dots & 0 & -a_1 \\
0 & 1 & \dots & 0 & -a_2 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & \dots & 1 & -a_{n-1}
\end{bmatrix}=
[\mathbf{e}_2, \mathbf{e}_3, \dots, \mathbf{e}_n, -\mathbf{a}],\] where $\mathbf{e}_i$ is the unit vector in $\C^n$ whose $i$-th entry is $1$ and zero elsewhere, and the vector $\mathbf{a}$ is defined by
\[\mathbf{a}=\begin{bmatrix}
a_0 \\
a_1 \\
\vdots \\
a_{n-1}
\end{bmatrix}.\]

Then prove that the following two statements are equivalent.

  1. There exists a vector $\mathbf{v}\in \C^n$ such that
    \[\mathbf{v}, A\mathbf{v}, A^2\mathbf{v}, \dots, A^{n-1}\mathbf{v}\] form a basis of $\C^n$.
  2. There exists an invertible matrix $S$ such that $S^{-1}AS=C$.
    (Namely, $A$ is similar to the companion matrix of its characteristic polynomial.)

 

Read solution

FavoriteLoadingAdd to solve later

Linearly Dependent if and only if a Vector Can be Written as a Linear Combination of Remaining Vectors

Problem 347

Let $V$ be a vector space over a scalar field $K$.
Let $S=\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be the set of vectors in $V$, where $n \geq 2$.

Then prove that the set $S$ is linearly dependent if and only if at least one of the vectors in $S$ can be written as a linear combination of remaining vectors in $S$.

 

Read solution

FavoriteLoadingAdd to solve later

Give a Formula For a Linear Transformation From $\R^2$ to $\R^3$

Problem 339

Let $\{\mathbf{v}_1, \mathbf{v}_2\}$ be a basis of the vector space $\R^2$, where
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
1
\end{bmatrix} \text{ and } \mathbf{v}_2=\begin{bmatrix}
1 \\
-1
\end{bmatrix}.\] The action of a linear transformation $T:\R^2\to \R^3$ on the basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ is given by
\begin{align*}
T(\mathbf{v}_1)=\begin{bmatrix}
2 \\
4 \\
6
\end{bmatrix} \text{ and } T(\mathbf{v}_2)=\begin{bmatrix}
0 \\
8 \\
10
\end{bmatrix}.
\end{align*}

Find the formula of $T(\mathbf{x})$, where
\[\mathbf{x}=\begin{bmatrix}
x \\
y
\end{bmatrix}\in \R^2.\]

 

Read solution

FavoriteLoadingAdd to solve later

10 Examples of Subsets that Are Not Subspaces of Vector Spaces

Problem 338

Each of the following sets are not a subspace of the specified vector space. For each set, give a reason why it is not a subspace.
(1) \[S_1=\left \{\, \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \in \R^3 \quad \middle | \quad x_1\geq 0 \,\right \}\] in the vector space $\R^3$.


(2) \[S_2=\left \{\, \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \in \R^3 \quad \middle | \quad x_1-4x_2+5x_3=2 \,\right \}\] in the vector space $\R^3$.


(3) \[S_3=\left \{\, \begin{bmatrix}
x \\
y
\end{bmatrix}\in \R^2 \quad \middle | \quad y=x^2 \quad \,\right \}\] in the vector space $\R^2$.


(4) Let $P_4$ be the vector space of all polynomials of degree $4$ or less with real coefficients.
\[S_4=\{ f(x)\in P_4 \mid f(1) \text{ is an integer}\}\] in the vector space $P_4$.


(5) \[S_5=\{ f(x)\in P_4 \mid f(1) \text{ is a rational number}\}\] in the vector space $P_4$.


(6) Let $M_{2 \times 2}$ be the vector space of all $2\times 2$ real matrices.
\[S_6=\{ A\in M_{2\times 2} \mid \det(A) \neq 0\} \] in the vector space $M_{2\times 2}$.


(7) \[S_7=\{ A\in M_{2\times 2} \mid \det(A)=0\} \] in the vector space $M_{2\times 2}$.

(Linear Algebra Exam Problem, the Ohio State University)


(8) Let $C[-1, 1]$ be the vector space of all real continuous functions defined on the interval $[a, b]$.
\[S_8=\{ f(x)\in C[-2,2] \mid f(-1)f(1)=0\} \] in the vector space $C[-2, 2]$.


(9) \[S_9=\{ f(x) \in C[-1, 1] \mid f(x)\geq 0 \text{ for all } -1\leq x \leq 1\}\] in the vector space $C[-1, 1]$.


(10) Let $C^2[a, b]$ be the vector space of all real-valued functions $f(x)$ defined on $[a, b]$, where $f(x), f'(x)$, and $f^{\prime\prime}(x)$ are continuous on $[a, b]$. Here $f'(x), f^{\prime\prime}(x)$ are the first and second derivative of $f(x)$.
\[S_{10}=\{ f(x) \in C^2[-1, 1] \mid f^{\prime\prime}(x)+f(x)=\sin(x) \text{ for all } -1\leq x \leq 1\}\] in the vector space $C[-1, 1]$.

 

Read solution

FavoriteLoadingAdd to solve later

Normal Nilpotent Matrix is Zero Matrix

Problem 336

A complex square ($n\times n$) matrix $A$ is called normal if
\[A^* A=A A^*,\] where $A^*$ denotes the conjugate transpose of $A$, that is $A^*=\bar{A}^{\trans}$.
A matrix $A$ is said to be nilpotent if there exists a positive integer $k$ such that $A^k$ is the zero matrix.

(a) Prove that if $A$ is both normal and nilpotent, then $A$ is the zero matrix.
You may use the fact that every normal matrix is diagonalizable.

(b) Give a proof of (a) without referring to eigenvalues and diagonalization.

(c) Let $A, B$ be $n\times n$ complex matrices. Prove that if $A$ is normal and $B$ is nilpotent such that $A+B=I$, then $A=I$, where $I$ is the $n\times n$ identity matrix.

 

Read solution

FavoriteLoadingAdd to solve later

Linear Transformation $T(X)=AX-XA$ and Determinant of Matrix Representation

Problem 330

Let $V$ be the vector space of all $n\times n$ real matrices.
Let us fix a matrix $A\in V$.
Define a map $T: V\to V$ by
\[ T(X)=AX-XA\] for each $X\in V$.

(a) Prove that $T:V\to V$ is a linear transformation.

(b) Let $B$ be a basis of $V$. Let $P$ be the matrix representation of $T$ with respect to $B$. Find the determinant of $P$.

 

Read solution

FavoriteLoadingAdd to solve later

Linear Transformation to 1-Dimensional Vector Space and Its Kernel

Problem 329

Let $n$ be a positive integer. Let $T:\R^n \to \R$ be a non-zero linear transformation.
Prove the followings.

(a) The nullity of $T$ is $n-1$. That is, the dimension of the kernel of $T$ is $n-1$.
(The kernel of $T$ is also called the null space of $T$.)

(b) Let $B=\{\mathbf{v}_1, \cdots, \mathbf{v}_{n-1}\}$ be a basis of the kernel $\ker(T)$ of $T$.
Let $\mathbf{w}$ be the $n$-dimensional vector that is not in $\ker(T)$. Then
\[B’=\{\mathbf{v}_1, \cdots, \mathbf{v}_{n-1}, \mathbf{w}\}\] is a basis of $\R^n$.

(c) Each vector $\mathbf{u}\in \R^n$ can be expressed as
\[\mathbf{u}=\mathbf{v}+\frac{T(\mathbf{u})}{T(\mathbf{w})}\mathbf{w}\] for some vector $\mathbf{v}\in \ker(T)$.

 

Read solution

FavoriteLoadingAdd to solve later

Quiz 8. Determine Subsets are Subspaces: Functions Taking Integer Values / Set of Skew-Symmetric Matrices

Problem 328

(a) Let $C[-1,1]$ be the vector space over $\R$ of all real-valued continuous functions defined on the interval $[-1, 1]$.
Consider the subset $F$ of $C[-1, 1]$ defined by
\[F=\{ f(x)\in C[-1, 1] \mid f(0) \text{ is an integer}\}.\] Prove or disprove that $F$ is a subspace of $C[-1, 1]$.

(b) Let $n$ be a positive integer.
An $n\times n$ matrix $A$ is called skew-symmetric if $A^{\trans}=-A$.
Let $M_{n\times n}$ be the vector space over $\R$ of all $n\times n$ real matrices.
Consider the subset $W$ of $M_{n\times n}$ defined by
\[W=\{A\in M_{n\times n} \mid A \text{ is skew-symmetric}\}.\] Prove or disprove that $W$ is a subspace of $M_{n\times n}$.

 

Read solution

FavoriteLoadingAdd to solve later