Find a Linear Transformation Whose Image (Range) is a Given Subspace

Problems and solutions in Linear Algebra

Problem 392

Let $V$ be the subspace of $\R^4$ defined by the equation
\[x_1-x_2+2x_3+6x_4=0.\] Find a linear transformation $T$ from $\R^3$ to $\R^4$ such that the null space $\calN(T)=\{\mathbf{0}\}$ and the range $\calR(T)=V$. Describe $T$ by its matrix $A$.

 
LoadingAdd to solve later
Sponsored Links

Solution.

Any vector
\[\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix}\in V\] can be written as
\begin{align*}
\mathbf{x}&=\begin{bmatrix}
x_2-2x_3-6x_4 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix}\\[6pt] &=x_2\begin{bmatrix}
1 \\
1 \\
0 \\
0
\end{bmatrix}+x_3\begin{bmatrix}
-2 \\
0 \\
1 \\
0
\end{bmatrix}+x_4\begin{bmatrix}
-6 \\
0 \\
0 \\
1
\end{bmatrix}.
\end{align*}

Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be the vectors appearing in the above linear combination of $\mathbf{x}$.
Then it is straightforward to see that the set $B=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis of $V$.

We define the linear transformation $T:\R^3\to \R^4$ by
\begin{align*}
T(\mathbf{x})=A\mathbf{x},
\end{align*}
where
\[A=[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]=\begin{bmatrix}
1 & -2 & -6 \\
1 &0 &0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}.\]

Since $B$ is a basis of $V$, in particular it is a linearly independent set. Thus, the columns of $A$ is linearly independent.
It follows that the null space $\calN(T)=\calN(A)=\{\mathbf{0}\}$.

Also, the range of $T$ is the same as the range of $A$, which is spanned by the columns of $A$.
Thus, the range $\calR(T)=\Span(B)=V$.

By our definition of $T$, the matrix representation of $T$ is $A$.

A more explicit formula for $T$ is given by
\begin{align*}
T\left(\, \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \,\right)=
\begin{bmatrix}
1 & -2 & -6 \\
1 &0 &0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=\begin{bmatrix}
x_1-2x_2-6x_3 \\
x_1\\
x_2 \\
x_3
\end{bmatrix}.
\end{align*}


LoadingAdd to solve later

Sponsored Links

More from my site

  • Subspace Spanned By Cosine and Sine FunctionsSubspace Spanned By Cosine and Sine Functions Let $\calF[0, 2\pi]$ be the vector space of all real valued functions defined on the interval $[0, 2\pi]$. Define the map $f:\R^2 \to \calF[0, 2\pi]$ by \[\left(\, f\left(\, \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \,\right) \,\right)(x):=\alpha \cos x + \beta […]
  • Idempotent Matrices are DiagonalizableIdempotent Matrices are Diagonalizable Let $A$ be an $n\times n$ idempotent matrix, that is, $A^2=A$. Then prove that $A$ is diagonalizable.   We give three proofs of this problem. The first one proves that $\R^n$ is a direct sum of eigenspaces of $A$, hence $A$ is diagonalizable. The second proof proves […]
  • Idempotent Linear Transformation and Direct Sum of Image and KernelIdempotent Linear Transformation and Direct Sum of Image and Kernel Let $A$ be the matrix for a linear transformation $T:\R^n \to \R^n$ with respect to the standard basis of $\R^n$. We assume that $A$ is idempotent, that is, $A^2=A$. Then prove that \[\R^n=\im(T) \oplus \ker(T).\]   Proof. To prove the equality $\R^n=\im(T) […]
  • Projection to the subspace spanned by a vectorProjection to the subspace spanned by a vector Let $T: \R^3 \to \R^3$ be the linear transformation given by orthogonal projection to the line spanned by $\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. (a) Find a formula for $T(\mathbf{x})$ for $\mathbf{x}\in \R^3$. (b) Find a basis for the image subspace of $T$. (c) Find […]
  • Quiz 6. Determine Vectors in Null Space, Range / Find a Basis of Null SpaceQuiz 6. Determine Vectors in Null Space, Range / Find a Basis of Null Space (a) Let $A=\begin{bmatrix} 1 & 2 & 1 \\ 3 &6 &4 \end{bmatrix}$ and let \[\mathbf{a}=\begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}, \qquad \mathbf{b}=\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \qquad \mathbf{c}=\begin{bmatrix} 1 \\ 1 […]
  • A Matrix Representation of a Linear Transformation and Related SubspacesA Matrix Representation of a Linear Transformation and Related Subspaces Let $T:\R^4 \to \R^3$ be a linear transformation defined by \[ T\left (\, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \,\right) = \begin{bmatrix} x_1+2x_2+3x_3-x_4 \\ 3x_1+5x_2+8x_3-2x_4 \\ x_1+x_2+2x_3 \end{bmatrix}.\] (a) Find a matrix $A$ such that […]
  • Row Equivalent Matrix, Bases for the Null Space, Range, and Row Space of a MatrixRow Equivalent Matrix, Bases for the Null Space, Range, and Row Space of a Matrix Let \[A=\begin{bmatrix} 1 & 1 & 2 \\ 2 &2 &4 \\ 2 & 3 & 5 \end{bmatrix}.\] (a) Find a matrix $B$ in reduced row echelon form such that $B$ is row equivalent to the matrix $A$. (b) Find a basis for the null space of $A$. (c) Find a basis for the range of $A$ that […]
  • Range, Null Space, Rank, and Nullity of a Linear Transformation from $\R^2$ to $\R^3$Range, Null Space, Rank, and Nullity of a Linear Transformation from $\R^2$ to $\R^3$ Define the map $T:\R^2 \to \R^3$ by $T \left ( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right )=\begin{bmatrix} x_1-x_2 \\ x_1+x_2 \\ x_2 \end{bmatrix}$. (a) Show that $T$ is a linear transformation. (b) Find a matrix $A$ such that […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Linear Algebra
Linear Algebra Problems and Solutions
Determine Whether Given Matrices are Similar

(a) Is the matrix $A=\begin{bmatrix} 1 & 2\\ 0& 3 \end{bmatrix}$ similar to the matrix $B=\begin{bmatrix} 3 & 0\\ 1&...

Close