Let $V$ denote the vector space of all real $2\times 2$ matrices.
Suppose that the linear transformation from $V$ to $V$ is given as below.
\[T(A)=\begin{bmatrix}
2 & 3\\
5 & 7
\end{bmatrix}A-A\begin{bmatrix}
2 & 3\\
5 & 7
\end{bmatrix}.\]
Prove or disprove that the linear transformation $T:V\to V$ is an isomorphism.

A linear transformation $T$ is an isomorphism if it is both surjective (onto) and injective (one to one).

Recall that a linear transformation $T$ is injective if and only if the kernel is trivial, that is, $\ker(T)=\{\mathbf{0}\}$.

Proof.

We claim that $T$ is not an isomorphism.

Recall that an isomorphism means that $T$ is surjective (onto) and injective (one to one).
Thus, to disprove that $T$ is a linear transformation, it suffices to prove that $T$ is not surjective or $T$ is not injective.

Let us prove that $T$ is not injective.
Equivalently, we show that the kernel $\ker(T)$ is nontrivial, that is, $\ker(T)\neq \{O\}$, where $O$ is the $2\times 2$ zero matrix.

If $A$ is in $\ker(T)$, then we have $O=T(A)$ and it follows that
\[\begin{bmatrix}
2 & 3\\
5 & 7
\end{bmatrix}A=A\begin{bmatrix}
2 & 3\\
5 & 7
\end{bmatrix}.\]

In other words, a matrix is in the kernel if it commutes with the matrix $\begin{bmatrix}
2 & 3\\
5& 7
\end{bmatrix}$.

So out goal is to find nonzero matrices that commute with $\begin{bmatrix}
2 & 3\\
5& 7
\end{bmatrix}$.

For example, the $2\times 2$ identity matrix $I$ will do.
Hence the kernel of $T$ contains a nonzero matrix, hence $T$ is not injective.
Thus, $T$ is not isomorphism.

Comments

Note that we did not have to determine the kernel.
What we needed is to show that $\ker(T)\neq \{O\}$.
We proved this by showing that $I\in \ker(T)$.

Another matrix in the kernel is $\begin{bmatrix}
2 & 3\\
5& 7
\end{bmatrix}$ itself.

Also, note that we proved that $T$ is not an isomorphism because $T$ is not injective.
We could have tried to prove that $T$ is not surjective but this is harder.

Linear Transformation to 1-Dimensional Vector Space and Its Kernel
Let $n$ be a positive integer. Let $T:\R^n \to \R$ be a non-zero linear transformation.
Prove the followings.
(a) The nullity of $T$ is $n-1$. That is, the dimension of the kernel of $T$ is $n-1$.
(The kernel of $T$ is also called the null space of $T$.)
(b) Let […]

Dimension of Null Spaces of Similar Matrices are the Same
Suppose that $n\times n$ matrices $A$ and $B$ are similar.
Then show that the nullity of $A$ is equal to the nullity of $B$.
In other words, the dimension of the null space (kernel) $\calN(A)$ of $A$ is the same as the dimension of the null space $\calN(B)$ of […]

Idempotent Linear Transformation and Direct Sum of Image and Kernel
Let $A$ be the matrix for a linear transformation $T:\R^n \to \R^n$ with respect to the standard basis of $\R^n$.
We assume that $A$ is idempotent, that is, $A^2=A$.
Then prove that
\[\R^n=\im(T) \oplus \ker(T).\]
Proof.
To prove the equality $\R^n=\im(T) […]

Isomorphism of the Endomorphism and the Tensor Product of a Vector Space
Let $V$ be a finite dimensional vector space over a field $K$ and let $\End (V)$ be the vector space of linear transformations from $V$ to $V$.
Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a basis for $V$.
Show that the map $\phi:\End (V) \to V^{\oplus n}$ defined by […]

Projection to the subspace spanned by a vector
Let $T: \R^3 \to \R^3$ be the linear transformation given by orthogonal projection to the line spanned by $\begin{bmatrix}
1 \\
2 \\
2
\end{bmatrix}$.
(a) Find a formula for $T(\mathbf{x})$ for $\mathbf{x}\in \R^3$.
(b) Find a basis for the image subspace of $T$.
(c) Find […]

Find a Linear Transformation Whose Image (Range) is a Given Subspace
Let $V$ be the subspace of $\R^4$ defined by the equation
\[x_1-x_2+2x_3+6x_4=0.\]
Find a linear transformation $T$ from $\R^3$ to $\R^4$ such that the null space $\calN(T)=\{\mathbf{0}\}$ and the range $\calR(T)=V$. Describe $T$ by its matrix […]

Linear Properties of Matrix Multiplication and the Null Space of a Matrix
Let $A$ be an $m \times n$ matrix.
Let $\calN(A)$ be the null space of $A$. Suppose that $\mathbf{u} \in \calN(A)$ and $\mathbf{v} \in \calN(A)$.
Let $\mathbf{w}=3\mathbf{u}-5\mathbf{v}$.
Then find $A\mathbf{w}$.
Hint.
Recall that the null space of an […]