The Sum of Subspaces is a Subspace of a Vector Space

Linear Algebra Problems and Solutions

Problem 430

Let $V$ be a vector space over a field $K$.
If $W_1$ and $W_2$ are subspaces of $V$, then prove that the subset
\[W_1+W_2:=\{\mathbf{x}+\mathbf{y} \mid \mathbf{x}\in W_1, \mathbf{y}\in W_2\}\] is a subspace of the vector space $V$.

 
LoadingAdd to solve later
Sponsored Links

Proof.

We prove the following subspace criteria:

  1. The zero vector $\mathbf{0}$ of $V$ is in $W_1+W_2$.
  2. For any $\mathbf{u}, \mathbf{v}\in W_1+W_2$, we have $\mathbf{u}+\mathbf{v}\in W_1+W_2$.
  3. For any $\mathbf{v}\in W_1+W_2$ and $r\in K$, we have $r\mathbf{v}\in W_1+W_2$.

Since $W_1$ and $W_2$ are subspaces of $V$, the zero vector $\mathbf{0}$ of $V$ is in both $W_1$ and $W_2$.
Thus we have
\[\mathbf{0}=\mathbf{0}+\mathbf{0}\in W_1+W_2.\] So condition 1 is met.


Next, let $\mathbf{u}, \mathbf{v}\in W_1+W_2$.
Since $\mathbf{u}\in W_1+W_2$, we can write
\[\mathbf{u}=\mathbf{x}+\mathbf{y}\] for some $\mathbf{x}\in W_1$ and $\mathbf{y}\in W_2$.
Similarly, we write
\[\mathbf{v}=\mathbf{x}’+\mathbf{y}’\] for some $\mathbf{x}’\in W_1$ and $\mathbf{y}’\in W_2$.

Then we have
\begin{align*}
\mathbf{u}+\mathbf{v}&=(\mathbf{x}+\mathbf{y})+(\mathbf{x}’+\mathbf{y}’)\\
&=(\mathbf{x}+\mathbf{x}’)+(\mathbf{y}+\mathbf{y}’).
\end{align*}
Since $\mathbf{x}$ and $\mathbf{x}’$ are both in the vector space $W_1$, their sum $\mathbf{x}+\mathbf{x}’$ is also in $W_1$.
Similarly we have $\mathbf{y}+\mathbf{y}’\in W_2$ since $\mathbf{y}, \mathbf{y}’\in W_2$.

Thus from the expression above, we see that
\[\mathbf{u}+\mathbf{v}\in W_1+W_2,\] hence condition 2 is met.


Finally, let $\mathbf{v}\in W_1+W_2$ and $r\in K$.
Then there exist $\mathbf{x}\in W_1$ and $\mathbf{y}\in W_2$ such that
\[\mathbf{v}=\mathbf{x}+\mathbf{y}.\] Since $W_1$ is a subspace, it is closed under scalar multiplication. Hence we have $r\mathbf{x}\in W_1$.
Similarly, we have $r\mathbf{y}\in W_2$.

It follows from this observation that
\begin{align*}
r\mathbf{v}&=r(\mathbf{x}+\mathbf{y})\\
&=r\mathbf{x}+r\mathbf{y}\in W_1+W_2,
\end{align*}
and thus condition 3 is met.


Therefore, by the subspace criteria $W_1+W_2$ is a subspace of $V$.

Related Question.

Let $U$ and $V$ be finite dimensional subspaces in a vector space over a scalar field $K$.
Then prove that
\[\dim(U+V) \leq \dim(U)+\dim(V).\]

For a proof, see the post “Dimension of the sum of two subspaces“.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Dimension of the Sum of Two SubspacesDimension of the Sum of Two Subspaces Let $U$ and $V$ be finite dimensional subspaces in a vector space over a scalar field $K$. Then prove that \[\dim(U+V) \leq \dim(U)+\dim(V).\]   Definition (The sum of subspaces). Recall that the sum of subspaces $U$ and $V$ is \[U+V=\{\mathbf{x}+\mathbf{y} \mid […]
  • The Intersection of Two Subspaces is also a SubspaceThe Intersection of Two Subspaces is also a Subspace Let $U$ and $V$ be subspaces of the $n$-dimensional vector space $\R^n$. Prove that the intersection $U\cap V$ is also a subspace of $\R^n$.   Definition (Intersection). Recall that the intersection $U\cap V$ is the set of elements that are both elements of $U$ […]
  • The Subspace of Linear Combinations whose Sums of Coefficients are zeroThe Subspace of Linear Combinations whose Sums of Coefficients are zero Let $V$ be a vector space over a scalar field $K$. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be vectors in $V$ and consider the subset \[W=\{a_1\mathbf{v}_1+a_2\mathbf{v}_2+\cdots+ a_k\mathbf{v}_k \mid a_1, a_2, \dots, a_k \in K \text{ and } […]
  • Determine Whether a Set of Functions $f(x)$ such that $f(x)=f(1-x)$ is a SubspaceDetermine Whether a Set of Functions $f(x)$ such that $f(x)=f(1-x)$ is a Subspace Let $V$ be the vector space over $\R$ of all real valued function on the interval $[0, 1]$ and let \[W=\{ f(x)\in V \mid f(x)=f(1-x) \text{ for } x\in [0,1]\}\] be a subset of $V$. Determine whether the subset $W$ is a subspace of the vector space $V$.   Proof. […]
  • Vector Space of 2 by 2 Traceless MatricesVector Space of 2 by 2 Traceless Matrices Let $V$ be the vector space of all $2\times 2$ matrices whose entries are real numbers. Let \[W=\left\{\, A\in V \quad \middle | \quad A=\begin{bmatrix} a & b\\ c& -a \end{bmatrix} \text{ for any } a, b, c\in \R \,\right\}.\] (a) Show that $W$ is a subspace of […]
  • Quiz 8. Determine Subsets are Subspaces: Functions Taking Integer Values / Set of Skew-Symmetric MatricesQuiz 8. Determine Subsets are Subspaces: Functions Taking Integer Values / Set of Skew-Symmetric Matrices (a) Let $C[-1,1]$ be the vector space over $\R$ of all real-valued continuous functions defined on the interval $[-1, 1]$. Consider the subset $F$ of $C[-1, 1]$ defined by \[F=\{ f(x)\in C[-1, 1] \mid f(0) \text{ is an integer}\}.\] Prove or disprove that $F$ is a subspace of […]
  • The Subset Consisting of the Zero Vector is a Subspace and its Dimension is ZeroThe Subset Consisting of the Zero Vector is a Subspace and its Dimension is Zero Let $V$ be a subset of the vector space $\R^n$ consisting only of the zero vector of $\R^n$. Namely $V=\{\mathbf{0}\}$. Then prove that $V$ is a subspace of $\R^n$.   Proof. To prove that $V=\{\mathbf{0}\}$ is a subspace of $\R^n$, we check the following subspace […]
  • Determine Whether Given Subsets in $\R^4$ are Subspaces or NotDetermine Whether Given Subsets in $\R^4$ are Subspaces or Not (a) Let $S$ be the subset of $\R^4$ consisting of vectors $\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$ satisfying \[2x+4y+3z+7w+1=0.\] Determine whether $S$ is a subspace of $\R^4$. If so prove it. If not, explain why it is not a […]

You may also like...

1 Response

  1. 06/05/2017

    […] mid mathbf{x}in U, mathbf{y}in V}.] The sum $U+V$ is a subspace. (See the post “The sum of subspaces is a subspace of a vector space” for a […]

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Linear Algebra
Problems and Solutions of Eigenvalue, Eigenvector in Linear Algebra
Idempotent Matrices are Diagonalizable

Let $A$ be an $n\times n$ idempotent matrix, that is, $A^2=A$. Then prove that $A$ is diagonalizable.  

Close