The Vector $S^{-1}\mathbf{v}$ is the Coordinate Vector of $\mathbf{v}$

Problems and solutions in Linear Algebra

Problem 632

Suppose that $B=\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis for $\R^2$. Let $S:=[\mathbf{v}_1, \mathbf{v}_2]$.
Note that as the column vectors of $S$ are linearly independent, the matrix $S$ is invertible.

Prove that for each vector $\mathbf{v} \in V$, the vector $S^{-1}\mathbf{v}$ is the coordinate vector of $\mathbf{v}$ with respect to the basis $B$.

 
LoadingAdd to solve later

Sponsored Links


Proof.

We first express the vector $\mathbf{v}$ as a linear combination of the basis vectors
\[\mathbf{v}=c_1\mathbf{v}_+c_2 \mathbf{v}_2.\] This expression is unique and the coordinate vector of $\mathbf{v}$ with respect to the basis $B$ is defined to be
\[[\mathbf{v}]_B =\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}.\]


Let
\[S^{-1}\mathbf{v}= \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}.\] Or equivalently,
\[\mathbf{v}=S\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}.\] Our goal is to show that $\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}$.


We have
\begin{align*}
c_1\mathbf{v}_+c_2 \mathbf{v}_2&=\mathbf{v}=S\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}=x_1\mathbf{v}_1+x_2\mathbf{v}_2.
\end{align*}

Hence
\[(x_1-c_1)\mathbf{v}_1+(x_2-c_2)\mathbf{v}_2=\mathbf{0}.\] As $B=\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly independent, we obtain $x_1=c_1$ and $x_2=c_2$.

Therefore,
\[S^{-1}\mathbf{v}=\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}=[\mathbf{v}]_B.\]


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
Express the Eigenvalues of a 2 by 2 Matrix in Terms of the Trace and Determinant

Let $A=\begin{bmatrix} a & b\\ c& d \end{bmatrix}$ be an $2\times 2$ matrix. Express the eigenvalues of $A$ in terms...

Close