# Idempotent (Projective) Matrices are Diagonalizable

## Problem 377

Let $A$ be an $n\times n$ idempotent complex matrix.
Then prove that $A$ is diagonalizable.

## Definition.

An $n\times n$ matrix $A$ is said to be idempotent if $A^2=A$.
It is also called projective matrix.

## Proof.

In general, an $n \times n$ matrix $B$ is diagonalizable if there are $n$ linearly independent eigenvectors. So if eigenvectors of $B$ span $\R^n$, then $B$ is diagonalizable.

We prove that $\R^n$ is spanned by eigenspaces. Every vector $\mathbf{v}\in \R^n$ can be expresses as
$\mathbf{v}=(\mathbf{v}-A\mathbf{v})+A\mathbf{v}=\mathbf{v}_0+\mathbf{v}_1,$ where we put $\mathbf{v}_0=\mathbf{v}-A\mathbf{v}$ and $\mathbf{v}_1=A\mathbf{v}$.

We claim that $\mathbf{v}_0$ and $\mathbf{v}_1$ are elements in the eigenspaces corresponding to (possible) eigenvalues $0$ and $1$, respectively.
To see this, we compute
\begin{align*}
A\mathbf{v}_0&=A(\mathbf{v}-A\mathbf{v})\\
&=A\mathbf{v}-A^2\mathbf{v}\\
&=A\mathbf{v}-A\mathbf{v} && \text{since $A$ is idempotent}\\
&=O=0\mathbf{v}_0.
\end{align*}

Thus, we have $A\mathbf{v}_0=0\mathbf{v}_0$, and this means that $\mathbf{v}_0$ is a vector in the eigenspace corresponding to the eigenvalue $0$.
(If $0$ is not an eigenvalue of $A$, then $\mathbf{v}_0=\mathbf{0}$.)

We also have
\begin{align*}
A\mathbf{v}_1=A(A\mathbf{v})=A^2\mathbf{v}=A\mathbf{v}=\mathbf{v}_1,
\end{align*}
where the third equality holds as $A$ is idempotent.
This implies that $\mathbf{v}_1$ is a vector in the eigenspace corresponding to eigenvalue $1$. (If $1$ is not an eigenvalue of $A$, then $\mathbf{v}_1=\mathbf{0}$.)

It follows that every vector $\mathbf{v}\in \R^n$ is a sum of eigenvectors (or the zero vector).
That is, $\R^n$ is spanned by eigenvectors.

By the general fact mentioned at the beginning of the proof, we conclude that the idempotent matrix $A$ is diagonalizable.

## Different Proofs

Three other different proofs of the fact that every idempotent matrix is diagonalizable are given in the post “Idempotent Matrices are Diagonalizable“.

### More from my site

• Determine Eigenvalues, Eigenvectors, Diagonalizable From a Partial Information of a Matrix Suppose the following information is known about a $3\times 3$ matrix $A$. $A\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}=6\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad A\begin{bmatrix} 1 \\ -1 \\ 1 […] • Idempotent Matrices are Diagonalizable Let A be an n\times n idempotent matrix, that is, A^2=A. Then prove that A is diagonalizable. We give three proofs of this problem. The first one proves that \R^n is a direct sum of eigenspaces of A, hence A is diagonalizable. The second proof proves […] • Unit Vectors and Idempotent Matrices A square matrix A is called idempotent if A^2=A. (a) Let \mathbf{u} be a vector in \R^n with length 1. Define the matrix P to be P=\mathbf{u}\mathbf{u}^{\trans}. Prove that P is an idempotent matrix. (b) Suppose that \mathbf{u} and \mathbf{v} be […] • Maximize the Dimension of the Null Space of A-aI Let \[ A=\begin{bmatrix} 5 & 2 & -1 \\ 2 &2 &2 \\ -1 & 2 & 5 \end{bmatrix}.$ Pick your favorite number $a$. Find the dimension of the null space of the matrix $A-aI$, where $I$ is the $3\times 3$ identity matrix. Your score of this problem is equal to that […]
• Idempotent Matrix and its Eigenvalues Let $A$ be an $n \times n$ matrix. We say that $A$ is idempotent if $A^2=A$. (a) Find a nonzero, nonidentity idempotent matrix. (b) Show that eigenvalues of an idempotent matrix $A$ is either $0$ or $1$. (The Ohio State University, Linear Algebra Final Exam […]
• Given All Eigenvalues and Eigenspaces, Compute a Matrix Product Let $C$ be a $4 \times 4$ matrix with all eigenvalues $\lambda=2, -1$ and eigensapces $E_2=\Span\left \{\quad \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \quad\right \} \text{ and } E_{-1}=\Span\left \{ \quad\begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 […] • Idempotent Linear Transformation and Direct Sum of Image and Kernel Let A be the matrix for a linear transformation T:\R^n \to \R^n with respect to the standard basis of \R^n. We assume that A is idempotent, that is, A^2=A. Then prove that \[\R^n=\im(T) \oplus \ker(T).$   Proof. To prove the equality $\R^n=\im(T) […] • Quiz 13 (Part 1) Diagonalize a Matrix Let $A=\begin{bmatrix} 2 & -1 & -1 \\ -1 &2 &-1 \\ -1 & -1 & 2 \end{bmatrix}.$ Determine whether the matrix$A$is diagonalizable. If it is diagonalizable, then diagonalize$A$. That is, find a nonsingular matrix$S$and a diagonal matrix$D\$ such that […]

#### You may also like...

##### Quiz 12. Find Eigenvalues and their Algebraic and Geometric Multiplicities

(a) Let \[A=\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 &1 & 1 & 1 \\ 0 &...

Close