Compute Determinant of a Matrix Using Linearly Independent Vectors

Linear Algebra Problems and Solutions

Problem 193

Let $A$ be a $3 \times 3$ matrix.
Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly independent $3$-dimensional vectors. Suppose that we have
\[A\mathbf{x}=\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}, A\mathbf{y}=\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}, A\mathbf{z}=\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}.\]

Then find the value of the determinant of the matrix $A$.

 
LoadingAdd to solve later
Sponsored Links

We give two solutions.

Solution 1.

Let $B$ be the $3\times 3$ matrix whose columns are the vectors $\mathbf{x},\mathbf{y}, \mathbf{z}$, that is,
\[B=[\mathbf{x} \mathbf{y} \mathbf{z}].\]

Then we have
\[AB=\begin{bmatrix}
1 & 0 & 1 \\
0 &1 &1 \\
1 & 0 & 1
\end{bmatrix}.\]

Then we have
\[\det(A)\det(B)=\det(AB)=\begin{vmatrix}
1 & 0 & 1 \\
0 &1 &1 \\
1 & 0 & 1
\end{vmatrix}=0.\] (If two rows are equal, then the determinant is zero. Or you may compute the determinant by the second column cofactor expansion.)

Note that the column vectors of $B$ are linearly independent, and hence $B$ is nonsingular matrix. Thus the $\det(B)\neq 0$.
Therefore the determinant of $A$ must be zero.

Solution 2.

Since
\[\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}+\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}=\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix},\]

we have
\[A\mathbf{x}+A\mathbf{y}=A\mathbf{z}.\] It follows that we have
\[A(\mathbf{x}+\mathbf{y}-\mathbf{z})=\mathbf{0}.\]

Since the vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly independent, the linear combination $\mathbf{x}+\mathbf{y}-\mathbf{z} \neq \mathbf{0}$.
Hence the matrix $A$ is singular, and the determinant of $A$ is zero.

(Recall that a matrix $A$ is singular if and only if there exist nonzero vector $\mathbf{v}$ such that $A\mathbf{u}=\mathbf{0}$.)


LoadingAdd to solve later

Sponsored Links

More from my site

  • Find Values of $h$ so that the Given Vectors are Linearly IndependentFind Values of $h$ so that the Given Vectors are Linearly Independent Find the value(s) of $h$ for which the following set of vectors \[\left \{ \mathbf{v}_1=\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{v}_2=\begin{bmatrix} h \\ 1 \\ -h \end{bmatrix}, \mathbf{v}_3=\begin{bmatrix} 1 \\ 2h \\ 3h+1 […]
  • Find All the Values of $x$ so that a Given $3\times 3$ Matrix is SingularFind All the Values of $x$ so that a Given $3\times 3$ Matrix is Singular Find all the values of $x$ so that the following matrix $A$ is a singular matrix. \[A=\begin{bmatrix} x & x^2 & 1 \\ 2 &3 &1 \\ 0 & -1 & 1 \end{bmatrix}.\]   Hint. Use the fact that a matrix is singular if and only if its determinant is […]
  • Find All Values of $x$ so that a Matrix is SingularFind All Values of $x$ so that a Matrix is Singular Let \[A=\begin{bmatrix} 1 & -x & 0 & 0 \\ 0 &1 & -x & 0 \\ 0 & 0 & 1 & -x \\ 0 & 1 & 0 & -1 \end{bmatrix}\] be a $4\times 4$ matrix. Find all values of $x$ so that the matrix $A$ is singular.   Hint. Use the fact that a matrix is singular if and only […]
  • Properties of Nonsingular and Singular MatricesProperties of Nonsingular and Singular Matrices An $n \times n$ matrix $A$ is called nonsingular if the only solution of the equation $A \mathbf{x}=\mathbf{0}$ is the zero vector $\mathbf{x}=\mathbf{0}$. Otherwise $A$ is called singular. (a) Show that if $A$ and $B$ are $n\times n$ nonsingular matrices, then the product $AB$ is […]
  • Find the Nullity of the Matrix $A+I$ if Eigenvalues are $1, 2, 3, 4, 5$Find the Nullity of the Matrix $A+I$ if Eigenvalues are $1, 2, 3, 4, 5$ Let $A$ be an $n\times n$ matrix. Its only eigenvalues are $1, 2, 3, 4, 5$, possibly with multiplicities. What is the nullity of the matrix $A+I_n$, where $I_n$ is the $n\times n$ identity matrix? (The Ohio State University, Linear Algebra Final Exam […]
  • Determine Conditions on Scalars so that the Set of Vectors is Linearly DependentDetermine Conditions on Scalars so that the Set of Vectors is Linearly Dependent Determine conditions on the scalars $a, b$ so that the following set $S$ of vectors is linearly dependent. \begin{align*} S=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}, \end{align*} where \[\mathbf{v}_1=\begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}, […]
  • Rotation Matrix in Space and its Determinant and EigenvaluesRotation Matrix in Space and its Determinant and Eigenvalues For a real number $0\leq \theta \leq \pi$, we define the real $3\times 3$ matrix $A$ by \[A=\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta &\cos\theta &0 \\ 0 & 0 & 1 \end{bmatrix}.\] (a) Find the determinant of the matrix $A$. (b) Show that $A$ is an […]
  • Maximize the Dimension of the Null Space of $A-aI$Maximize the Dimension of the Null Space of $A-aI$ Let \[ A=\begin{bmatrix} 5 & 2 & -1 \\ 2 &2 &2 \\ -1 & 2 & 5 \end{bmatrix}.\] Pick your favorite number $a$. Find the dimension of the null space of the matrix $A-aI$, where $I$ is the $3\times 3$ identity matrix. Your score of this problem is equal to that […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Linear Algebra
Find the Eigenvalues and Eigenvectors of the Matrix $A^4-3A^3+3A^2-2A+8E$.

Let \[A=\begin{bmatrix} 1 & -1\\ 2& 3 \end{bmatrix}.\] Find the eigenvalues and the eigenvectors of the matrix \[B=A^4-3A^3+3A^2-2A+8E.\] (Nagoya University...

Close