Find an Orthonormal Basis of $\R^3$ Containing a Given Vector

Vector Space Problems and Solutions

Problem 600

Let $\mathbf{v}_1=\begin{bmatrix}
2/3 \\ 2/3 \\ 1/3
\end{bmatrix}$ be a vector in $\R^3$.

Find an orthonormal basis for $\R^3$ containing the vector $\mathbf{v}_1$.

 
LoadingAdd to solve later

Sponsored Links


The first solution uses the Gram-Schumidt orthogonalization process.
On the other hand, the second solution uses the cross product.

Solution 1 (The Gram-Schumidt Orthogonalization)

First of all, note that the length of the vector $\mathbf{v}_1$ is $1$ as
\[\|\mathbf{v}_1\|=\sqrt{\left(\frac{2}{3}\right)^2+\left(\frac{2}{3}\right)^2+\left(\frac{1}{3}\right)^2}=1.\]


We want to find two vectors $\mathbf{v}_2, \mathbf{v}_3$ such that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthonormal basis for $\R^3$.
The vectors $\mathbf{v}_2, \mathbf{v}_3$ must lie on the plane that is perpendicular to the vector $\mathbf{v}_1$.
So consider the subspace
\[W=\left \{\,\begin{bmatrix} x\\y\\z \end{bmatrix} \in \R^3 \quad \middle | \quad \begin{bmatrix} x\\y\\z \end{bmatrix} \cdot \begin{bmatrix}
2/3 \\ 2/3 \\ 1/3
\end{bmatrix}=0 \,\right\}\]

Note that $W$ consists of all vectors that are perpendicular to $\mathbf{v}_1$, hence $W$ is a plane that is perpendicular to $\mathbf{v}_1$.


The relation
\[ \begin{bmatrix} x\\y\\z \end{bmatrix} \cdot \begin{bmatrix}
2/3 \\ 2/3 \\ 1/3
\end{bmatrix}=0\] can be written as
\[\frac{2}{3}x+\frac{2}{3}y+\frac{1}{3}z=0,\] or equivalently
\[z=-2x-2y.\] Hence the vectors in $W$ can be written as
\[\begin{bmatrix} x\\y\\z \end{bmatrix}=\begin{bmatrix} x\\y\\-2x-2y \end{bmatrix}=x\begin{bmatrix}1\\0\\-2\end{bmatrix}+y\begin{bmatrix}0\\1\\-2\end{bmatrix}.\]

It follows that
\[\left\{\,\begin{bmatrix}1\\0\\-2\end{bmatrix}, \begin{bmatrix}0\\1\\-2\end{bmatrix} \,\right\}\] is a basis for the subspace $W$. Let us call these vectors $\mathbf{u}_1, \mathbf{u}_2$, respectively.


We apply the Gram-Schmidt orthogonalization to this basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ and obtain an orthogonal basis as follows.
We do not change the first vector: let $\mathbf{w}_1=\mathbf{u}_1$.

Next, we set
\[\mathbf{w}_2=\mathbf{u}_2+a\mathbf{u}_1\] for some scalar $a$.
To determine $a$, we compute
\begin{align*}
0&=\mathbf{w}_1\cdot \mathbf{w}_2=\mathbf{u}_1\cdot(\mathbf{u}_2+a\mathbf{u}_1) \\
&=\mathbf{u}_1\cdot\mathbf{u}_2+a\mathbf{u}_1\cdot\mathbf{u}_1\\
&=(1\cdot 0+0\cdot 1+(-2)\cdot(-2))+a(1\cdot 1+ 0\cdot 0 +(-2)\cdot (-2)\\
&=4+5a.
\end{align*}
Hence, $a=-4/5$ and we obtain
\begin{align*}
\mathbf{w}_2&=\mathbf{u}_2-\frac{4}{5}\mathbf{u}_1\\[6pt] &=\begin{bmatrix}0\\1\\-2\end{bmatrix} -\frac{4}{5}\begin{bmatrix}1\\0\\-2\end{bmatrix}.
\end{align*}
(Note that you may use the Gram-Schumidt orthogonalization formula, instead of the above method.)


As scaling does not change the orthogonality, consider $5\mathbf{w}_2$, instead of $\mathbf{w}_2$ (to avoids fractions).
We have
\[5\mathbf{w}_2=\begin{bmatrix}0\\5\\-10\end{bmatrix} -4\begin{bmatrix}1\\0\\-2\end{bmatrix}=\begin{bmatrix}
-4\\ 5\\-2
\end{bmatrix}.\]

Therefore, $\{\mathbf{w}_1, 5\mathbf{w}_2\}$ is an orthogonal basis of $W$.


We obtain an orthonormal basis of $W$ by normalizing the length of these basis vectors.
As
\[\|\mathbf{w}_1\|=\sqrt{1^2+0^2+(-2)^2}=\sqrt{5}\] and
\[\|5\mathbf{w}_2\|=\sqrt{(-4)^2+5^2+(-2)^2}=\sqrt{45}=3\sqrt{5},\] the vectors
\[\mathbf{v}_2:=\frac{\mathbf{w}_1}{\|\mathbf{w}_1\|}=\frac{1}{\sqrt{5}}\begin{bmatrix}1\\0\\-2\end{bmatrix}\] and
\[\mathbf{v}_3:=\frac{5\mathbf{w}_2}{\|5\mathbf{w}_2\|}=\frac{1}{3\sqrt{5}}\begin{bmatrix}-4\\5\\-2\end{bmatrix}\] form an orthonormal basis of $W$.
Note that as the vectors $\mathbf{v}_2, \mathbf{v}_3$ lie in $W$, they are still perpendicular to the vector $\mathbf{v}_1$.


It follows that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthonomal set in $\R^3$, thus it is an orthonormal basis for $\R^3$.

Solution 2 (Cross Product)

Next, we solve the problem using the cross product.

Let $\mathbf{v}_1=\frac{1}{3}\mathbf{u}_1$, where $\mathbf{u}_1=\begin{bmatrix}
2 \\
2 \\
1
\end{bmatrix}$.
Our first goal is to find the vectors $\mathbf{u}_2$ and $\mathbf{u}_3$ such that $\{\mathbf{u}_1,\mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal basis for $\R^3$.


Let $\mathbf{x}=\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}$ be a vector that is perpendicular to $\mathbf{u}_1$.
Then we have $\mathbf{x}\cdot \mathbf{u}_1=0$, and hence we have the relation
\[2x+2y+z=0.\] For example, the vector $\mathbf{u}_2:=\begin{bmatrix}
1 \\
0 \\
-2
\end{bmatrix}$ satisfies the relation, and hence $\mathbf{u}_2\cdot \mathbf{u}_1=0$.
(So far, it is not so different from Solution 1.)


Now, let us define the third vector $\mathbf{u}_3$ to be the cross product of $\mathbf{u}_1$ and $\mathbf{u}_2$:
\[\mathbf{u}_3:=\mathbf{u}_1\times \mathbf{u}_2=\begin{bmatrix}
2 \\
2 \\
1
\end{bmatrix}\times \begin{bmatrix}
1 \\
0 \\
-2
\end{bmatrix}=\begin{bmatrix}
-4 \\
5 \\
-2
\end{bmatrix}.\] By the property of the cross product, the vector $\mathbf{u}_3$ is perpendicular to both $\mathbf{u}_1, \mathbf{u}_2$.

Therefore, the set
\[\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}=\left\{\,\begin{bmatrix}
2 \\
2 \\
1
\end{bmatrix}, \begin{bmatrix}
1 \\
0 \\
-2
\end{bmatrix}, \begin{bmatrix}
-4 \\
5 \\
-2
\end{bmatrix} \,\right\}\] is an orthogonal basis for $\R^3$ as it consists of three nonzero orthogonal vectors.


Finally, to obtain an orthonormal basis for $\R^2$, we just need to normalize the lengths of these vectors.
The lengths are
\begin{align*}
\|\mathbf{u}_1\|&=\sqrt{2^2+2^2+1^2}=\sqrt{9}=3 \\
\|\mathbf{u}_2\|&=\sqrt{1^2+0^2+(-2)^2}=\sqrt{5}\\
\|\mathbf{u}_3\|&=\sqrt{(-4)^2+5^2+(-2)^2}=\sqrt{45}=3\sqrt{5}.
\end{align*}
Then we have $\mathbf{v}_1=\frac{\mathbf{u}_1}{\|\mathbf{u}_1\|}$.
Let $\mathbf{v}_2:=\frac{\mathbf{u}_2}{\|\mathbf{u}_2\|}$ and $\mathbf{v}_3:=\frac{\mathbf{u}_3}{\|\mathbf{u}_3\|}$.

It follows that the set
\[\{\mathbf{v}_1\mathbf{v}_2\mathbf{v}_3\}=\left\{\, \frac{1}{3}\begin{bmatrix}
2 \\
2 \\
1
\end{bmatrix}, \, \frac{1}{\sqrt{5}}\begin{bmatrix}1\\0\\-2\end{bmatrix}, \, \frac{1}{3\sqrt{5}}\begin{bmatrix}-4\\5\\-2\end{bmatrix} \,\right\}\] is an orthonormal basis for $\R^3$.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
symmetric matrices problems
The Inverse Matrix of a Symmetric Matrix whose Diagonal Entries are All Positive

Let $A$ be a real symmetric matrix whose diagonal entries are all positive real numbers. Is it true that the...

Close