Given a Spanning Set of the Null Space of a Matrix, Find the Rank

Purdue University Linear Algebra Exam Problems and Solutions

Problem 303

Let $A$ be a real $7\times 3$ matrix such that its null space is spanned by the vectors
\[\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}, \begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix}, \text{ and } \begin{bmatrix}
1 \\
-1 \\
0
\end{bmatrix}.\] Then find the rank of the matrix $A$.

(Purdue University, Linear Algebra Final Exam Problem)
 
LoadingAdd to solve later

Sponsored Links

Solution.

We first determine the nullity of $A$ and deduce the rank of $A$ by the rank-nullity theorem.
The null space $\calN(A)$ of the matrix $A$ is spanned by
\[\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}, \begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix}, \text{ and } \begin{bmatrix}
1 \\
-1 \\
0
\end{bmatrix}.\]

Let us find a basis of the null space $\calN(A)$ among these vectors.
We use the “leading 1 method”.
Form the matrix whose column vectors are these three vectors and we apply elementary row operations as follows.
\begin{align*}
\begin{bmatrix}
1 & 2 & 1 \\
2 &1 &-1 \\
0 & 0 & 0
\end{bmatrix}
\xrightarrow{R_2-2R_1}
\begin{bmatrix}
1 & 2 & 1 \\
0 &-3 & -3 \\
0 & 0 & 0
\end{bmatrix}
\xrightarrow{-\frac{1}{3}R_2}\\[10pt] \begin{bmatrix}
1 & 2 & 1 \\
0 &1 & 1 \\
0 & 0 & 0
\end{bmatrix}
\xrightarrow{R_1-2R_2}
\begin{bmatrix}
1 & 0 & -1 \\
0 &1 & 1 \\
0 & 0 & 0
\end{bmatrix}.
\end{align*}
The last matrix is in reduced row echelon form and the first and second column contain the leading 1’s.

Therefore, the first two vectors
\[\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}, \begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix}\] form a basis of the null space $\calN(A)$.
Hence the nullity, which is the dimension of $\calN(A)$, is $2$.

Since the size of the matrix $A$ is $7 \times 3$, the rank-nullity theorem gives
\[3=\text{nullity of } A + \text{rank of } A.\] Thus, the rank of $A$ is $1$.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Ohio State University exam problems and solutions in mathematics
If a Matrix $A$ is Singular, then Exists Nonzero $B$ such that $AB$ is the Zero Matrix

Let $A$ be a $3\times 3$ singular matrix. Then show that there exists a nonzero $3\times 3$ matrix $B$ such...

Close