The Inverse Matrix of an Upper Triangular Matrix with Variables

Linear algebra problems and solutions

Problem 275

Let $A$ be the following $3\times 3$ upper triangular matrix.
\[A=\begin{bmatrix}
1 & x & y \\
0 &1 &z \\
0 & 0 & 1
\end{bmatrix},\] where $x, y, z$ are some real numbers.

Determine whether the matrix $A$ is invertible or not. If it is invertible, then find the inverse matrix $A^{-1}$.

 
LoadingAdd to solve later

Sponsored Links

Solution.

We form the augmented matrix
\[[A\mid I]= \left[\begin{array}{rrr|rrr}
1 & x & y & 1 &0 & 0 \\
0 & 1 & z & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
\end{array} \right]\] and apply elementary row operations as follows.
\begin{align*}
\left[\begin{array}{rrr|rrr}
1 & x & y & 1 &0 & 0 \\
0 & 1 & z & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
\end{array} \right] \xrightarrow{R_1-xR_2}
\left[\begin{array}{rrr|rrr}
1 & 0 & y-xz & 1 & -x & 0 \\
0 & 1 & z & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
\end{array} \right]\\[10pt] \xrightarrow{\substack{R_1-(y-xz)R_3\\ R_2-zR_3}}
\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & -x & xz-y \\
0 & 1 & 0 & 0 & 1 & -z \\
0 & 0 & 1 & 0 & 0 & 1 \\
\end{array} \right].
\end{align*}
We could reduce the matrix $A$ into the identity matrix $I$.
Thus, the matrix $A$ is invertible and the right $3\times 3$ matrix is the inverse matrix of $A^{-1}$.
Hence,
\[A^{-1}=\begin{bmatrix}
1 & -x & xz-y \\
0 & 1 & -z \\
0 & 0 & 1
\end{bmatrix}.\]


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

1 Response

  1. 02/03/2017

    […] The inverse element of the matrix [begin{bmatrix} 1 & x & y \ 0 &1 &z \ 0 & 0 & 1 end{bmatrix}] is given by [begin{bmatrix} 1 & -x & xz-y \ 0 & 1 & -z \ 0 & 0 & 1 end{bmatrix}.] For a proof, see the post The inverse matrix of an upper triangular matrix with variables. […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear Algebra Problems and Solutions
The Union of Two Subspaces is Not a Subspace in a Vector Space

Let $U$ and $V$ be subspaces of the vector space $\R^n$. If neither $U$ nor $V$ is a subset of...

Close