# Eigenvalues of Orthogonal Matrices Have Length 1. Every $3\times 3$ Orthogonal Matrix Has 1 as an Eigenvalue

## Problem 419

(a) Let $A$ be a real orthogonal $n\times n$ matrix. Prove that the length (magnitude) of each eigenvalue of $A$ is $1$.

(b) Let $A$ be a real orthogonal $3\times 3$ matrix and suppose that the determinant of $A$ is $1$. Then prove that $A$ has $1$ as an eigenvalue.

## Proof.

### (a) Prove that the length (magnitude) of each eigenvalue of $A$ is $1$

Let $A$ be a real orthogonal $n\times n$ matrix.
Let $\lambda$ be an eigenvalue of $A$ and let $\mathbf{v}$ be a corresponding eigenvector.
Then we have
$A\mathbf{v}=\lambda \mathbf{v}.$ It follows from this we have
$\|A\mathbf{v}\|^2=\|\lambda \mathbf{v}\|^2=|\lambda|^2\|\mathbf{v}\|^2.$ The left hand side becomes
\begin{align*}
&\|A\mathbf{v}\|^2\\
&=\overline{(A\mathbf{v})}^{\trans}(A\mathbf{v}) && \text{by definition of the length}\\
&=\bar{\mathbf{v}}^{\trans}A^{\trans}A\mathbf{v} && \text{because $A$ is real}\\
&=\bar{\mathbf{v}}^{\trans}\mathbf{v} && \text{because $A^{\trans}A=I$ as $A$ is orthogonal}\\
&=\|\mathbf{v}\|^2 && \text{by definition of the length.}
\end{align*}

It follows that we obtain
$\|\mathbf{v}\|^2=|\lambda|^2\|\mathbf{v}\|^2.$ Since $\mathbf{v}$ is an eigenvector, it is non-zero, and hence $\|\mathbf{v}\|\neq 0$.
Canceling $\|\mathbf{v}\|$, we have
$|\lambda|^2=1.$ Since the length is non-negative, we obtain
$|\lambda|=1,$ as required.

### (b) Prove that $A$ has $1$ as an eigenvalue.

Let $A$ be a real orthogonal $3\times 3$ matrix with $\det(A)=1$.
Let us consider the characteristic polynomial $p(t)=\det(A-tI)$ of $A$.
The roots of $p(t)$ are eigenvalues of $A$.

Since $A$ is a real $3\times 3$ matrix, the degree of the polynomial $p(t)$ is $3$ and the coefficients are real.
Thus, there are two cases to consider:

1. there are three real eigenvalues $\alpha, \beta, \gamma$, and
2. there is one real eigenvalue $\alpha$ and a complex conjugate pair $\beta, \bar{\beta}$ of eigenvalues.

Let us first deal with case 1.
By part (a), the lengths of eigenvalues $\alpha, \beta, \gamma$ are $1$. Since they are real numbers, we have
$\alpha=\pm 1, \beta=\pm 1, \gamma=\pm 1.$ Recall that the product of all eigenvalues of $A$ is the determinant of $A$.
(For a proof, see the post “Determinant/trace and eigenvalues of a matrix“.)
Thus we have
$\alpha \beta \gamma=\det(A)=1.$ Thus, at least one of $\alpha, \beta, \gamma$ is $1$.

Next, we consider case 2. Again the lengths of eigenvalues $\alpha, \beta, \bar{\beta}$ are $1$.
Then we have
\begin{align*}
1&=\det(A)=\alpha \beta \bar{\beta}\\
&=\alpha |\beta|^2=\alpha.
\end{align*}

Therefore, in either case, we see that $A$ has $1$ as an eigenvalue.

### More from my site

• Eigenvalues of a Hermitian Matrix are Real Numbers Show that eigenvalues of a Hermitian matrix $A$ are real numbers. (The Ohio State University Linear Algebra Exam Problem)   We give two proofs. These two proofs are essentially the same. The second proof is a bit simpler and concise compared to the first one. […]
• Rotation Matrix in Space and its Determinant and Eigenvalues For a real number $0\leq \theta \leq \pi$, we define the real $3\times 3$ matrix $A$ by $A=\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta &\cos\theta &0 \\ 0 & 0 & 1 \end{bmatrix}.$ (a) Find the determinant of the matrix $A$. (b) Show that $A$ is an […]
• Inner Product, Norm, and Orthogonal Vectors Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are vectors in $\R^n$. Suppose that vectors $\mathbf{u}_1$, $\mathbf{u}_2$ are orthogonal and the norm of $\mathbf{u}_2$ is $4$ and $\mathbf{u}_2^{\trans}\mathbf{u}_3=7$. Find the value of the real number $a$ in […]
• Prove that the Length $\|A^n\mathbf{v}\|$ is As Small As We Like. Consider the matrix $A=\begin{bmatrix} 3/2 & 2\\ -1& -3/2 \end{bmatrix} \in M_{2\times 2}(\R).$ (a) Find the eigenvalues and corresponding eigenvectors of $A$. (b) Show that for $\mathbf{v}=\begin{bmatrix} 1 \\ 0 \end{bmatrix}\in \R^2$, we can choose […]
• Characteristic Polynomial, Eigenvalues, Diagonalization Problem (Princeton University Exam) Let $\begin{bmatrix} 0 & 0 & 1 \\ 1 &0 &0 \\ 0 & 1 & 0 \end{bmatrix}.$ (a) Find the characteristic polynomial and all the eigenvalues (real and complex) of $A$. Is $A$ diagonalizable over the complex numbers? (b) Calculate $A^{2009}$. (Princeton University, […]
• Determine Whether Given Matrices are Similar (a) Is the matrix $A=\begin{bmatrix} 1 & 2\\ 0& 3 \end{bmatrix}$ similar to the matrix $B=\begin{bmatrix} 3 & 0\\ 1& 2 \end{bmatrix}$?   (b) Is the matrix $A=\begin{bmatrix} 0 & 1\\ 5& 3 \end{bmatrix}$ similar to the matrix […]
• Determinant of a General Circulant Matrix Let $A=\begin{bmatrix} a_0 & a_1 & \dots & a_{n-2} &a_{n-1} \\ a_{n-1} & a_0 & \dots & a_{n-3} & a_{n-2} \\ a_{n-2} & a_{n-1} & \dots & a_{n-4} & a_{n-3} \\ \vdots & \vdots & \dots & \vdots & \vdots \\ a_{2} & a_3 & \dots & a_{0} & a_{1}\\ a_{1} & a_2 & […] • Determinant of Matrix whose Diagonal Entries are 6 and 2 Elsewhere Find the determinant of the following matrix \[A=\begin{bmatrix} 6 & 2 & 2 & 2 &2 \\ 2 & 6 & 2 & 2 & 2 \\ 2 & 2 & 6 & 2 & 2 \\ 2 & 2 & 2 & 6 & 2 \\ 2 & 2 & 2 & 2 & 6 \end{bmatrix}.$ (Harvard University, Linear Algebra Exam […]

#### You may also like...

##### There is at Least One Real Eigenvalue of an Odd Real Matrix

Let $n$ be an odd integer and let $A$ be an $n\times n$ real matrix. Prove that the matrix $A$...

Close