A One Side Inverse Matrix is the Inverse Matrix: If $AB=I$, then $BA=I$

Problem 548

An $n\times n$ matrix $A$ is said to be invertible if there exists an $n\times n$ matrix $B$ such that

  1. $AB=I$, and
  2. $BA=I$,

where $I$ is the $n\times n$ identity matrix.

If such a matrix $B$ exists, then it is known to be unique and called the inverse matrix of $A$, denoted by $A^{-1}$.


In this problem, we prove that if $B$ satisfies the first condition, then it automatically satisfies the second condition.
So if we know $AB=I$, then we can conclude that $B=A^{-1}$.


Let $A$ and $B$ be $n\times n$ matrices.
Suppose that we have $AB=I$, where $I$ is the $n \times n$ identity matrix.

Prove that $BA=I$, and hence $A^{-1}=B$.

 

Read solution

FavoriteLoadingAdd to solve later

Find Inverse Matrices Using Adjoint Matrices

Problem 546

Let $A$ be an $n\times n$ matrix.

The $(i, j)$ cofactor $C_{ij}$ of $A$ is defined to be
\[C_{ij}=(-1)^{ij}\det(M_{ij}),\] where $M_{ij}$ is the $(i,j)$ minor matrix obtained from $A$ removing the $i$-th row and $j$-th column.

Then consider the $n\times n$ matrix $C=(C_{ij})$, and define the $n\times n$ matrix $\Adj(A)=C^{\trans}$.
The matrix $\Adj(A)$ is called the adjoint matrix of $A$.

When $A$ is invertible, then its inverse can be obtained by the formula

\[A^{-1}=\frac{1}{\det(A)}\Adj(A).\]

For each of the following matrices, determine whether it is invertible, and if so, then find the invertible matrix using the above formula.

(a) $A=\begin{bmatrix}
1 & 5 & 2 \\
0 &-1 &2 \\
0 & 0 & 1
\end{bmatrix}$.

 
(b) $B=\begin{bmatrix}
1 & 0 & 2 \\
0 &1 &4 \\
3 & 0 & 1
\end{bmatrix}$.

 

Read solution

FavoriteLoadingAdd to solve later

The Inner Product on $\R^2$ induced by a Positive Definite Matrix and Gram-Schmidt Orthogonalization

Problem 539

Consider the $2\times 2$ real matrix
\[A=\begin{bmatrix}
1 & 1\\
1& 3
\end{bmatrix}.\]

(a) Prove that the matrix $A$ is positive definite.

(b) Since $A$ is positive definite by part (a), the formula
\[\langle \mathbf{x}, \mathbf{y}\rangle:=\mathbf{x}^{\trans} A \mathbf{y}\] for $\mathbf{x}, \mathbf{y} \in \R^2$ defines an inner product on $\R^n$.
Consider $\R^2$ as an inner product space with this inner product.

Prove that the unit vectors
\[\mathbf{e}_1=\begin{bmatrix}
1 \\
0
\end{bmatrix} \text{ and } \mathbf{e}_2=\begin{bmatrix}
0 \\
1
\end{bmatrix}\] are not orthogonal in the inner product space $\R^2$.

(c) Find an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ of $\R^2$ from the basis $\{\mathbf{e}_1, \mathbf{e}_2\}$ using the Gram-Schmidt orthogonalization process.

 

Read solution

FavoriteLoadingAdd to solve later

A Symmetric Positive Definite Matrix and An Inner Product on a Vector Space

Problem 538

(a) Suppose that $A$ is an $n\times n$ real symmetric positive definite matrix.
Prove that
\[\langle \mathbf{x}, \mathbf{y}\rangle:=\mathbf{x}^{\trans}A\mathbf{y}\] defines an inner product on the vector space $\R^n$.

(b) Let $A$ be an $n\times n$ real matrix. Suppose that
\[\langle \mathbf{x}, \mathbf{y}\rangle:=\mathbf{x}^{\trans}A\mathbf{y}\] defines an inner product on the vector space $\R^n$.

Prove that $A$ is symmetric and positive definite.

 

Read solution

FavoriteLoadingAdd to solve later

Diagonalize the Complex Symmetric 3 by 3 Matrix with $\sin x$ and $\cos x$

Problem 533

Consider the complex matrix
\[A=\begin{bmatrix}
\sqrt{2}\cos x & i \sin x & 0 \\
i \sin x &0 &-i \sin x \\
0 & -i \sin x & -\sqrt{2} \cos x
\end{bmatrix},\] where $x$ is a real number between $0$ and $2\pi$.

Determine for which values of $x$ the matrix $A$ is diagonalizable.
When $A$ is diagonalizable, find a diagonal matrix $D$ so that $P^{-1}AP=D$ for some nonsingular matrix $P$.

 

Read solution

FavoriteLoadingAdd to solve later

Prove that $\F_3[x]/(x^2+1)$ is a Field and Find the Inverse Elements

Problem 529

Let $\F_3=\Zmod{3}$ be the finite field of order $3$.
Consider the ring $\F_3[x]$ of polynomial over $\F_3$ and its ideal $I=(x^2+1)$ generated by $x^2+1\in \F_3[x]$.

(a) Prove that the quotient ring $\F_3[x]/(x^2+1)$ is a field. How many elements does the field have?

(b) Let $ax+b+I$ be a nonzero element of the field $\F_3[x]/(x^2+1)$, where $a, b \in \F_3$. Find the inverse of $ax+b+I$.

(c) Recall that the multiplicative group of nonzero elements of a field is a cyclic group.

Confirm that the element $x$ is not a generator of $E^{\times}$, where $E=\F_3[x]/(x^2+1)$ but $x+1$ is a generator.

 

Read solution

FavoriteLoadingAdd to solve later